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Maximum Likelihood Estimators
If θ̂ maximizes the likelihood, we call it a Maximum Likelihood
Estimator (MLE). The Cramer-Rao Inequality tells us MLEs are
minimum variance estimators but MLEs are often biased.

Intuition: Suppose you estimate the mean µ and variance σ2 of a
Normal distribution by plotting a histogram, choose an initial µ and
σ and overlay the corresponding density curve, then iteratively
adjust µ and σ until it looks like a good match.

Histogram of X

X

D
en

si
ty

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of X

X

D
en

si
ty

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of X

X

D
en

si
ty

6 8 10 12 14
0.

0
0.

1
0.

2
0.

3
0.

4



MLE Example
For iid Normal data (f (xi ;µ, σ)) the joint density fX (x;µ, σ) =

∏n
i=1 f (xi , µ, σ)

defines the likelihood function for parmeters µ and σ,

L(µ, σ; x) =
n∏

i=1

f (xi , µ, σ).

Plotting likelihood values over a range of possible parameter values (here holding
one parameter constant while varying the other) in R yields. . .
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The MLEs for µ and σ are the pair of values that yield the maximum likelihood
value. In this case, using the optim() function yields µ = 9.98 and σ = 1.88.



Likelihood Examples

Q: What is a plausible likelihood function for the following data set
where an unfair coin was tossed 14 times and the number of
outcomes that were heads was counted:
y = (4, 6, 6, 7, 7, 9, 10, 8, 2, 6)?

Q: What is the likelihood function for a data set of tree heights?

Q: How would you determine a reasonable likelihood function for
the distances from UNR to all of the Starbucks stores in Nevada?



Other statistical frameworks?

1. (Ordinary) Least Squares and Weighted Least Squares
2. Regression Models: SLR, MLR, GLM, GAM,
3. Bayesian Statistics



Simple and Multiple Linear Regression
x=runif(100,0,10); y=rnorm(100,x/2+9,3);
fit=lm(y~x)
summary(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9287 -2.1336 0.2398 1.9411 6.5422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.0159 0.5858 17.098 < 2e-16 ***
## x 0.3931 0.1014 3.874 0.000193 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.965 on 98 degrees of freedom
## Multiple R-squared: 0.1328, Adjusted R-squared: 0.124
## F-statistic: 15.01 on 1 and 98 DF, p-value: 0.0001931



Simple and Multiple Linear Regression
plot(x,y); abline(fit)

0 2 4 6 8 10

6
8

10
12

14
16

18

x

y



Simple and Multiple Linear Regression
x1=runif(100,0,10); x2=runif(100,100,200); y2=rnorm(100,x1/2+x2/10+17,2);
fit=lm(y2~x1+x2)
summary(fit)

##
## Call:
## lm(formula = y2 ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8992 -1.1548 0.1905 1.3867 4.3104
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.425932 1.132055 13.626 < 2e-16 ***
## x1 0.501901 0.068033 7.377 5.51e-11 ***
## x2 0.110914 0.006888 16.103 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 97 degrees of freedom
## Multiple R-squared: 0.7644, Adjusted R-squared: 0.7595
## F-statistic: 157.3 on 2 and 97 DF, p-value: < 2.2e-16



GLM Model Framework

The GLM is described by three components:

1. The random component specifies the conditional distribution of
yi |~xi and is typically a member of the exponential family of
distributions (Normal, binomial, Poisson, Negative-binomial,
etc.) but other distributions are possible.

2. We call our linear sum of predictors the linear predictor, and
denote it as ηi = β0 +

∑p
j=1 βj xij

3. We call the transformation that links the expected response
values µi = E (yi |~x) and the linear predictor ηi the link
function: g(µi) = ηi . This link function is assumed to be
smooth (differentiable) and invertible. It’s inverse g−1 is often
called the mean function since µi = g−1(ηi).



GLM vs MLR

Recall the MLR model with untransformed response values can be
written as

yi = β0 +
p∑

j=1
βj xij + εi .

In that case, we model E (g(yi)) as a linear sum of xi values, and
further assume Normal errors with constant variance.

Consider, for now, the simple untransformed case (i.e., g is the
identity function).



GLM vs MLR

One could pose the MLR model as a GLM (not to be confused with
a General Linear Model) as follows:

1. The random component is Normally distributed.
2. The linear predictor is ηi = β0 +

∑p
j=1 βj xij (nothing new

here!)
3. The link function is the identity function:

g(E (yi)) = E (yi) = ηi



GLM vs MLR

Note that transforming Y values under MLR is different than
specifying a non-identity link function!

GLMs model g(E (yi)), the transformed expecation of the response,
using the linear predictor. This gives more flexibility to apply
linearizing transformations without affecting the distribution about
that trend. For example, compare the two models by comparing yi
values and inverse-transforms:

MLR: yi = g−1(ηi + εi)

GLM: yi = g−1(ηi) + εi

This distinction often makes GLMs preferrable over MLR.



Parameter Estimation, etc.

Parameter estimation is done via Maximum Liklihood, and most of
the diagnostics for multiple linear regresion carry over to GLMs.

For more information, please see Ch. 15 of Applied Regression
Analysis & Generalized Linear Models by John Fox.
http://www.sagepub.com/sites/default/files/upm-binaries/21121_
Chapter_15.pdf

http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf
http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf


Example: Logistic Regression (Sheather, Ch. 8)

A common form of response data are counts of a particular type of
outcome among m trials. For example, the number of individuals in
a sample with a specific genotype. In such cases, the data are best
modeled using a binomial distribution, not a Normal distribution,
using logistic regression.

E (Y |x) ∼ binom(m, p)



Example: Logistic Regression

Here the parameter of interest is p – the probability of a success on
each of our m trials. Since m is known and not a parameter that
needs to be estimated, the goal is to estimate p as a function of our
linear predictor. In logistic regression, this is done by assuming a
logit link function,

E (Y |X ) = m p = m exp(ηi)
1 + exp(ηi)

= m
1 + exp(−ηi)

Thus, a little algebra gives that

ηi = log
( p(x)
1− p(x)

)

We call the right side of that equation the logit function, and
p(x)/(1− p(x)) the odds.



Example: Logistic Regression

To see how this can be cast as a GLM, note that:

1. The distribution is binomial.
2. The relationship between the mean (let’s use E(yi/m = θi))

and linear predictor ηi is given by the logit function

ηi = g(θ) = log
(

θ(x)
1− θ(x)

)



Example: Logistic Regression
Using R’s built in iris data, let’s see if we can use petal length to
differentiate between two species (setosa vs versicolor):

iris2 <- iris[iris$Species=="virginica" | iris$Species=="versicolor",]
iris2$Pvirginica=iris2$Species=="virginica"
#Species <- iris2$Species; Petal.Length <- iris2$Petal.Length;
fit <- glm(Species~Petal.Length, data=iris2, family=binomial(link="logit"))
fit

##
## Call: glm(formula = Species ~ Petal.Length, family = binomial(link = "logit"),
## data = iris2)
##
## Coefficients:
## (Intercept) Petal.Length
## -43.781 9.002
##
## Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
## Null Deviance: 138.6
## Residual Deviance: 33.43 AIC: 37.43



Example: Logistic Regression
plot(iris2$Petal.Length, iris2$Pvirginica, ylab="P(virginica)", pch=19, xlab="Petal Length", main="P(virginica)")
tmpdat=data.frame(Petal.Length=seq(min(iris2$Petal.Length),max(iris2$Petal.Length),length=500))
points(tmpdat[,1],predict(fit,tmpdat,type="response"),type="l")

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(virginica)

Petal Length

P
(v

irg
in

ic
a)


