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About These Notes

These are course notes from a Probability course taught using An Introduction
to Mathematical Statistics and Its Applications by Larsen and Marx (5th ed).

These notes are heavily based on notes provided to me by Professor Ania
Panorska, who had previously taught that course, plus material I have added
based on my own materials or material found in other Probability textbooks.

You will undoubtedly find these notes lack many important details. I
strongly urge you to seek out more detailed treatments of this
material as needed -- e.g., by reading them along side a textbook or similarly
thorough resource -- especially if using these notes for more than a light refresher.

-- Paul J. Hurtado
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Basic Definitions

Experiment: Any procedure that can be repeated under the same conditions (theoretically)
infinite number of times, and such that its outcomes are well defined. By well defined we mean we
can describe all possible outcomes.

Outcome (or Sample Outcome): Any possible outcome of the experiment.

Sample Space: The set of all possible outcomes of an experiment. Usually denoted by S.

Event: A subset of the sample space S. Events are usually denoted by capital letters.

A probability space comprises three parts (S,F ,P ):

1. S is the sample space, the set of all outcomes. (Some texts use Ω instead of S). Ex: For
a coin toss experiment, S = {H,T}.

2. F is the σ-algebra associated with S. It is the collection of subsets of S (we call these
subsets events), and includes S and the empty set ∅. This set of events is closed under
countable unions, countable intersections and complementation. Furthermore, F satisfies:

(a) if A ∈ F then Ac ∈ F , and

(b) if A1, A2, ... are in F , then their union
⋃
iAi is also in F .

NOTE: Together these conditions imply closure under countable intersections. If S is
countable, F is the power set of S, i.e., it is all subsets of S. Mathematicians call these events
the measurable sets in S.

3. P is our probability function P : F → [0, 1]. It associates each event (i.e., each subset of S
included in F) with a number between 0 and 1. Furthermore, we require that

(a) P is non-negative (P (A) ≥ P (∅) = 0, ∀A ∈ F),

(b) P is countably additive, i.e., for for a countable, disjoint set of events A1, A2, ... then
P (
⋃
Ai) =

∑
i P (Ai)), and

(c) P (S) = 1.

Set Operations

Operations on events (sets): Union, Intersection, Complement.

Definition: Let A and B be two events from sample space S.

1. The union of A and B (A ∪B) is exactly all elements in A or B or both.

2. The intersection of A and B (A ∩B) is exactly all elements in both A and B.

3. The complement of A is the event (set) AC which contains all elements in S not in A.
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NOTE: We can extend the definition of a union (or intersection) of two events, to any finite
number of events A1, A2, . . . , Ak defined over the sample space S.

Definition: Events A and B are mutually exclusive if their intersection is empty (A ∩B = ∅).

1. The union of A1, A2, . . . , Ak is the event (set)
⋃k
i=1Ai = A1 ∪ A2 ∪ . . . ∪ Ak which elements

belong to at least one of the sets A1, A2, . . . , Ak.

2. The intersection of A1, A2, . . . , Ak is the event (set)
⋂k
i=1Ai = A1 ∩ A2 ∩ . . . ∩ Ak which

elements belong to all the sets A1, A2, . . . , Ak.

Additional properties of unions and intersections:

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) 3. A ∪ (B ∪ C) = (A ∪B) ∪ C

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) 4. A ∩ (B ∩ C) = (A ∩B) ∩ C

DeMorgan’s Laws: Treat complement of a union or intersection.

1. The complement of a union ofA1, A2, . . . , Ak is the intersection of the complementsAC1 , A
C
2 , . . . , A

C
k ,

that is (
⋃k
i=1Ai)

C =
⋂k
i=1A

C
i .

2. The complement of an intersection of A1, A2, . . . , Ak is the union of the complements
AC1 , A

C
2 , . . . , A

C
k , that is (

⋂k
i=1Ai)

C =
⋃k
i=1A

C
i .

Probability Function, P()

The probability function P (·) is a function defined on the set of events (subsets of S) which assigns
a value in [0,1] to each event A, that is, P (A) ∈ [0, 1].

Kolmogorov’s Axioms. A function P is a probability function if and only if it satisfies the
following axioms:

1. Probability of any event A is nonegative: P (A) ≥ 0.

2. Probability of the sample space is 1: P (S) = 1.

3. The probability of a union of two mutually exclusive events A and B is the sum of their
probabilities: P (A ∪B) = P (A) + P (B) for any mutually exclusive events A and B.

4. The probability of a union of infinitely many pairwise disjoint events, is the sum of their
probabilities. That is, if A1, A2, . . . are events over S such that Ai ∩ Aj = Ø for i 6= j, then
P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

NOTE: Axioms 1 - 3 are enough for finite sample spaces. Axiom 4 is necessary when the sample
space is infinite (e.g. the real numbers, R).
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Properties of Probability Functions

Suppose P is probability function on the subsets of the sample space S, and A and B are events
defined over S. Then, the following are true.

1. P (AC) = 1− P (A).

2. P (Ø) = 0.

3. If A ⊂ B, then P (A) ≤ P (B).

4. For any event A, P (A) ≤ 1.

5. If events A1, A2, . . . , Ak are such that Ai ∩ Aj = Ø for i 6= j, then P (
⋃k
i=1Ai) =

∑k
i=1 P (Ai).

6. Addition Rule: For any two events A and B: P (A ∪B) = P (A) + P (B)− P (A ∩B).

Conditional Probability and Total Probability

Definition: The conditional probability of event A given that event B occurred is

P (A|B) =
P (A ∩B)

P (B)
, if P (B) 6= 0.

Theorem: Multiplication Rule: The probability of A and B, P (A ∩ B) can be found using
conditional probability: P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) for P (A 6= 0) and P (B 6= 0).

Theorem: Multiplication Rule for more than 2 events: Let A1, A2, . . . , An be events over
S. then P (A1 ∩ A2∩, . . . , An) = P (A1)P (A2|A1) · · ·P (An−1|A1∩, . . . , An−2)P (An|A1∩, . . . , An−1).

Definition: Sets B1, B2, . . . , Bn form a partition of the sample space S if: (1) They ”cover” S,
i.e., B1 ∪B2 ∪ . . . ∪Bn = S; and (2) They are pairwise disjoint.

Theorem: Total Probability formula: Let the sets B1, B2, . . . , Bn form a partition of the
sample space S. Let A be an event over S. Then

P (A) =
n∑
i=1

P (A|Bi)P (Bi).

Bayes Rule

Theorem: Bayes Formula: (1) For any events A and B defined on sample space S and such
that P (B) 6= 0 we have:

P (A|B) =
P (B|A)P (A)

P (B)
,

(2) More generally, if the sets B1, B2, . . . , Bn form a partition of the sample space S, we have

P (Bj|A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

,

for every j = 1, . . . , n.
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Independence

Definition: Two events A and B are called independent if P (A ∩B) = P (A)P (B).

NOTE: (1) If A and B are independent, then P (A|B) = P (A) and P (B|A) = P (B).

(2) If A and B are independent, then so are their complements AC and BC .

Definition: Events A1, A2, . . . , An are independent if for every subset of them we have

P (Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik).

Independent vs Mutual Exclusive (aka Disjoint)

How is independence related to sets being disjoint (i.e., mutually exclusive)?

1. Independence deals with the relationship between the probabilities of events A and B,
and the probability of their co-occurrence, P (A ∩B). Independence says something about
events that can co-occur, whereas disjoint events, by definition, never co-occur.

2. The notion of sets being disjoint relates to the elements in those events, and whether or
any are shared (i.e, whether or not they have an empty intersection). Mutual exclusivity
describes which outcomes cannot co-occur. Intuition should tell us that disjoint sets are
NOT independent! Why? Suppose two events are disjoint. Then knowledge of one event
occurring tells you quite a bit of information about whether or not the other has occurred
(by definition, it has not!). For example, if you are 22 years old, I know that you are not 21
years old. In fact, disjoint sets cannot be independent except in the trivial case where one
or both events has probability zero: since P (A ∩ B) = 0 for disjoint events, they can only
satisfy the definition of independence (P (A ∩B) = P (B)P (A)) if P (A) = 0 or P (B) = 0 (or
both are true).

Example: Consider the experiment defined by one card out of a standard 52 card deck.
Let event A be that the card is red (i.e., A is the set of all 26 red cards) and B be the event that
the card is a king (i.e., B is all four kings).
Are A and B independent? Check that they satisfy the definition, P (A ∩B) = P (A)P (B):

P (A ∩B) = P (red king) = 1/26

P (A)P (B) = 1/2 · 4/52 = 1/26

So they are independent events!
Are they disjoint? No. Their intersection A ∩B = {red king} is not empty.
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Combinatorics: Counting, Ordering, Arranging

Multiplication Rule: If operation A can be performed in n different ways and operation B can
be performed in m different ways, then the sequence of these two operations (say, AB) can be
performed in n ·m ways.

Extension of Multiplication Rule to k operations: If operations Ai, i = 1, . . . , k can be per-
formed in ni different ways, then the ordered sequence (operation A1, operation A2, . . ., operation
Ak) can be performed in n1n2 · · ·nk ways.

Permutations: An arrangement of k objects in a row is called a permutation of length k.

Number of permutations of k elements chosen from a set on n elements: The number
of permutations of length k, that can be formed from a set of n distinct objects is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

Number of permutations of n elements chosen from a set on n elements: The number
of permutations of length n (ordered sequences of length n), that can be formed from a set of n
distinct objects is

n(n− 1)(n− 2) · · · (1) = n!.

Approximation for n! (Stirling’s Formula): n! ≈
√

2πnn+1/2e−n.

Number of permutations of elements that are not all different: The number of permuta-
tions of length n, that can be formed from a set of n1 objects of type 1, n2 objects of type 2, . . ., nk
objects of type k, where

∑k
i=1 ni = n, is

n!

n1!n2! · · ·nk!
.

Combinations: A set of k unordered objects is called a combination of size k.

Number of combinations of size k of n distinct objects: The number of ways to form
combinations of size k from a set of n distinct objects, no repetitions, is denoted by the Newton
symbol (or binomial coefficient) (n

k
) , and equal to(

n
k

)
=

n!

k!(n− k)!
.

NOTE: The number of combinations of size k of n distinct objects is the number of different
subsets of size k formed from a set of n elements.

Combinatorial probabilities - classical definition of probability: Suppose there are n
simple outcomes in a sample space S. Let event A consist of m of those outcomes. Suppose also
that all outcomes are qually likely. Then, the probability of event A is defined as P(A)=m/n.
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Random Variables

Definition A probability space (S, E , P ) is composed of a sample space S, the algebra E (the
set of subsets of S), and a probability function P : E → [0, 1] that satisfies Kolmogorov’s axioms.
In practice, we think of random variables (r.v.) in two ways.

1. We commonly think of a random variable as a ‘‘place holder” for the observed outcome of an
experiment. Ex: Let X be the number of heads in 10 coin tosses.

2. Formally, if X is a random variable, it is a real-valued measurable function that maps one
probability space into another (real-valued) probability space. That is, X : (S, E , P ) →
(Ω,F , PX) where Ω ⊆ R and we define

PX(A) = P (s ∈ Ω : X(s) ∈ A) for all events A ∈ F

Q: How are these consistent?

A: We tend to only be explicit about the real-valued representation of the outcome, and
focus on X and PX instead of explicitly defining all of the other details.

Definition: We refer to P as the distribution of the random variable and this often is
sufficient to imply the structure of the associated probability space and experiment.

Definition A real-valued function X that maps one probability space (S, E) to another probability
space (Ω,F) is called a random variable (r.v.) if

X−1(E) ∈ E for all E ∈ F

That is, each event in the ‘‘new” algebra corresponds to (measureable) events in the original space.
This ensures that X induces a consistent probability measure on the new space.
Definition Suppose r.v. X maps (S, E , P )→ (Ω,F , PX). The probability function (measure) PX
is called the probability distribution of X and is given by

PX(A) = P ({s ∈ S : X(s) ∈ A}) for all A ∈ F .

NOTE: By X being real-valued, we mean that Ω ⊆ R or Ω ⊆ Rn. In the latter case, we call X a
random vector.
Example 1: Stating that ‘‘X is a Bernoulli r.v. with probability p of success” implies that
S = {0, 1} and P (X = k) = pk(1− p)1−k. That is, P (X = 1) = p and P (X = 0) = 1− p.

Definition: A Bernoulli process X = (X1, ..., Xn) is a series of n independent and identically
distributed (iid) Bernoulli trials (Xi) each with probability p of success.

Example 2: Stating that ‘‘Y is a binomial r.v. with parameters n and p” implies that Y =
∑n

i=0Xi

is the number of successes in a Bernoulli process of length n, and therefore that S = {0, 1, ..., n}
and P (X = k) =

(
n
k

)
pk(1− p)n−k for k ∈ S (zero otherwise).

Example 3: If X is a hypergeometric r.v., it represents the number of successes in n draws from
a population of size N with K successes. Thus S = {0, ...,min(K,n)} and

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
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Theorem: The distribution of X is uniquely determined by the cumulative distribution
function (cdf) of X, denoted ny F or FX :

F (x) = P (X ≤ x) = P ((−∞, x]).

Properties of cdf

1. F is nondecreasing: If x1 ≤ x2, then F (x1) ≤ F (x2);

2. F is right - continuous: for any x, limy→x+ F (y) = F (x);

3. limx→∞ F (x) = 1;

4. limx→−∞ F (x) = 0.

NOTE: Here are two useful rules for computing probabilities:

1. For a sequence of increasing sets A1 ⊂ A2 ⊂ . . . the probability of their union is the limit of
their probabilities, that is: P (

⋃∞
i=1Ai) = limi→∞ P (Ai).

2. For a sequence of decreasing sets A1 ⊃ A2 ⊃ . . . the probability of their intersection is the
limit of their probabilities, that is: P (

⋂∞
i=1Ai) = limi→∞ P (Ai).

Types of distributions: There are three main types of distributions / random variables:

1. Discrete r.v.: CDF is a step function, S has at most countable number of outcomes.
Examples: Binomial, Poisson

2. Continuous r.v.: CDF is a smooth function, events are typically intervals.
Examples: Normal, Exponential

3. Mixed r.v.: CDF is neither continuous nor step function.
Example: Zero-inflated Normal
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Discrete Random Variables

Definition. Suppose a sample space S has finite or countable number of simple outcomes. Let p
be a real valued function on S such that

1. 0 ≤ p(s) ≤ 1 for every element s of S;

2.
∑

s∈S p(s) = 1,

Then p is said to be a discrete probability function.

NOTE: For any event A defined on S: P (A) =
∑

s∈A p(s).

Definition. A real valued function X : S → R is called a random variable.

Definition. A random variable with finite or countably many values is called a discrete random
variable.

Definition. Any discrete random variable X is described by its probability density function
(or probability mass function), denoted pX(k), which provides probabilities of all values of X as
follows:

pX(k) = P (s ∈ S : X(s) = k).

NOTE: For any k not in the range (set of values) of X: pX(k) = 0.

NOTE: For any t ≤ s, P (t ≤ X ≤ s) =
∑s

k=t P (X = k).

NOTATION: For simplicity, we denote pX(k) = P (X = k) thus suppressing the dependence on
the sample space.

Examples:
1. Binomial r.v. X with n trials and probability of success equal to p, i.e., X ∼ binom(n, p).

pX(k) = P (k successes in n trials) =

(
n
k

)
pk(1− p)n−k, for k = 0, 1, 2, . . . , n.

2. Hypergeometric random variable X.

Definition. Let X be a discrete random variable. For any real number t, the cumulative
distribution function F of X at t is given by

FX(t) = P (X ≤ t) = P (s ∈ S : X(s) ≤ t).

Linear transformation: Let X be a discrete random variable (rv). let Y=aX+b, where a and b
are real constants. Then pY (y) = pX(y−b

a
).
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Continuous Random Variables

Suppose a sample space Ω is uncountable, e.g., Ω = [0, 1] or Ω = R. We can define a random
variable X : (Ω, E) → (S,B) where the new sample space S is a subset of R and the algebra B
is the Borel sets (all unions, intersections and complements of the open and closed intervals in
S). The probability structure on such a space can be described using a special function, f called
probability density function (pdf).

Definition. If sample space S ⊆ R then we say P is a continuous probability distribution if
there exists a function f(t) such that for any closed interval [a, b] ⊂ S we have that P ([a, b]) =∫ b
a
f(t)dt. It follows that P (A) =

∫
A
f(t)dt for all events A.

For a function f to be a pdf, it is necessary and sufficient that the following properties hold:

1. f(t) ≥ 0 for every t;

2.
∫∞
−∞ f(t)dt = 1.

NOTE: If P (A) =
∫
A
f(t)dt for all A, then P satisfies all the Kolmogorov probability axioms.

Definition: Any function Y that maps S (a subset of real numbers) into the real numbers is called
a continuous random variable. The pdf of Y is a function f such that

P (a ≤ Y ≤ b) =

∫ b

a

f(t)dt.

For any event A defined on S: P (A) =
∫
A
f(t)dt.

Theorem: For any continuous random variable P (X = a) = 0 for any real number a.
Definition. The cdf of a continuous random variable Y (with pdf f) is FY (t), given by

FY (y) = P (Y ≤ y) = P ({s ∈ S : Y (s) ≤ y}) =

∫ y

−∞
f(t)dt for any real y.

Theorem. If FY (t) is a cdf and fY (t) is a pdf of a continuous random variable Y , then

d

dt
FY (t) = fY (t).

Linear transformation: Let X be a continuous random variable with pdf f . Let Y = aX + b,
where a and b are real constants. Then the pdf of Y is: gY (y) = 1

|a|fX(y−b
a

).
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Expectation and Expected Values

We often quantify the central tendency of a random variable using its expected value (mean).

Definition Let X be a random variable.

1. If X is a discrete random variable with pdf pX(k), then the expected value of X is given by

E(X) = µ = µX =
∑
all k

k · pX(k) =
∑
all k

k · P (X = k)

2. If X is a continuous random variable with pdf f , then

E(X) = µ = µX =

∫ ∞
−∞

x f(x) dx.

3. If X is a mixed random variable with cdf F, then the expected value of X is given by

E(X) = µ = µX =

∫ ∞
−∞

xF ′(x)dx+
∑
all k

k · P (X = k),

where F ′ is the derivative of F where the derivative exists and k’s in the summation are the
‘‘discrete” values of X.

NOTE: For the expectation of a random variable to exist, we assume that all integrals and sums
in the definition of the expectation above converge absolutely.

Definition: The median of a random variable is the value at the midpoint distribution of X
-- another way to characterize the central tendency of a random variable. Specifically, if X is a
discrete random variable, then its median m is the point for which P (X < m) = P (X > m). If
there are two values m and m′ such that P (X ≤ m) = 0.5 and P (X ≥ m′) = 0.5, the median is
the average of m and m′, (m+m′)/2.

If X is a continuous random variable with pdf f , the median is the solution of the equation:∫ m

−∞
f(x) dx =

1

2
.

Expected Values of Functions of Random Variables

Theorem. Let X be a random variable. Let g(·) be a function of X.
If X is discrete with pdf pX(k), then the expected value of g(X) is given by

E (g(X)) =
∑
all k

g(k) · pX(k) =
∑
all k

g(k) · P (X = k),

provided that
∑

all k |g(k)| pX(k) is finite.

12



If X is a continuous random variable with pdf fX(x), and if g is a continuous function, then the
expected value of g(X) is given by

E (g(X)) =

∫ ∞
−∞

g(x) f(x) dx,

provided that
∫∞
−∞ |g(x)| f(x) dx is finite.

NOTE: Expected value is a linear operator, that is E(aX + b) = aE(X) + b, for any rv X.

Properties of Expectation, E()

1. Linearity: E(aX + b) = aE(X) + b, or in general, E(
∑n

i=1Xi) =
∑n

i=1E(X)

2. For an indicator function, E(1A(X)) = PX(A)

3. For X a finite random variable, S = {1, ..., n}, then

E(X) =
n∑
j=1

P (X ≥ j)

4. (Markov Inequality) For X ≥ 0,

P (X ≥ a) ≤ E(X)

a

5. If X and Y are independent, E(XY ) = E(X)E(Y ).

Variance

To get an idea about variability of a random variable, we look at the measures of spread. These
include the variance, standard deviation, and coefficient of variation.

Definition. Variance of a random variable, denoted Var(X) or σ2, is the average of its squared
deviations from the mean µ. Let X be a random variable.

1. If X is a discrete random variable with pdf pX(k) and mean µX , then the variance of X is
given by

V ar(X) = σ2 = E[(X − µX)2] =
∑
all k

(k − µX)2pX(k) =
∑
all k

(k − µX)2P (X = k)

2. If X is a continuous random variable with pdf f and mean µX , then

V ar(X) = σ2 = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2f(x)dx.
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3. If X is a mixed random variable with cdf F and mean µX , then the variance of X is given by

V ar(X) = σ2 = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2F ′(x)dx+
∑
all k

(k − µX)2P (X = k),

where F ′ is the derivative of F where the derivative exists and k’s in the summation are the
”discrete” values of X.

NOTE: If E(X2) is not finite, then the variance does not exist.

Definition. The standard deviation (sd(X) or σ) is sd(X) =
√
V ar(X).

NOTE: The units of variance are square units of the random variable. The units of standard
deviation are the same as the units of the random variable.

Theorem: Let X be a random variable with variance σ2. Then, we can compute σ2 as follows:

V ar(X) = σ2 = E(X2)− µ2
X = E(X2)− [E(X)]2

Theorem: Let X be a r.v. with variance σ2. Then variance of aX + b, for any real a and b, is
given by:

V ar(aX + b) = a2V ar(X).

Definition: The coefficient of variation (CV) is the standard deviation divided by the mean:

CV (X) = E(X)/
√

(V ar(X)

The sd gives an absolute measure of spread, while the CV quantifies spread relative to the mean.

Moments of a Random Variable

Expected value is called the first moment of a random variable. Variance is called the second
central moment or second moment about the mean of a random variable. In general, we have the
following definition of the central and ordinary moments of random variables.

Definition: Let X be an r.v. Then the

1. The rth moment of X (about the origin) is E(Xr), provided that the moment exists.

2. The rth moment of X about the mean is E[(X − µX)r], provided that the moment exists.

14



Multivariate Distributions

In statistics, we typically worth with data sets with sample sizes greater than one! This naturally
leads us to consider all of these data not as replicates from a single univariate distribution, but
as a single vector-valued observation from a multivariate distribution. Before we discuss how the
above material generalizes to N > 1 dimensions, here is some motivation from statistics.

Motivating Examples: Multivariate vs Univariate

Before we discuss random vectors, here is some statistical motivation for caring about multivariate
distributions. These examples emphasize two things: First, linear algebra is fundamental to
applied statistics. Embrace it! Second, a common use of density and probability mass functions
for parameter estimation are to define likelihoods, which are joint mass (or density) functions but
where we flip-flop our notions about which quantities in these equations are constants vs variables.

ORDINARY LEAST SQUARES (OLS)
Suppose you have data yi that are assumed to be observations of normally distributed random
variables Yi with standard deviation σ and a mean µi that depends on different factors Xi that
can be manipulated (or that can otherwise vary) for each experiment. For example, heights of
individuals (Yi) as a function of age, gender, etc. might look like

Yi = Normal(µi = β0 + βiXi1 + · · ·+ βkXik, σ)

Since a normal r.v. with mean µ and standard deviation σ can be written as µ plus a normal r.v.
with mean 0 (i.e., µ+N(0, σ)) it follows that

Yi = β0 + β1Xi1 + · · ·+ βkXik + εi

where each εi are independent normals with mean 0 and standard deviation σ. Writing these n
equations in matrix form yields

Y1
Y2
...
Yn

 =


1 +X11 + · · ·+X1k

1 +X21 + · · ·+X2k
...

1 +Xn1 + · · ·+Xnk



β0
β1
...
βn

+


ε1
ε2
...
εn


or written in more compact matrix and vector notation,

Y = Xβ + ε

Note that E(Y) = Xβ. Assuming the observed outcomes (data) y = (y1, · · · , yn)T and inputs X are
known, and the goal is to estimate the (unknown) parameters β (call this estimate β̂). Statistical
theory says the best way to compute that estimate is to take the sum of squared differences (SSD)
between the observed data and the expected model output for a given set of parameters β (i.e.,
SSD = rT r where r = y − E(Y); a measure of ‘‘distance” between model and data) then use the
β that minimizes that distance as our estimate β̂. It can be shown with a little linear algebra that

β̂ = (XTX)−1XTy.
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Therefore we’ve used linear algebra and a little multivariate calculus to turn an optimization
problem into a relatively simple matrix computation!

Concluding Remark: In practice, statistics is a multivariate endeavor and therefore you should
be familiar with these basic probability concepts in a multivariate setting. Also, some basic tools
from linear algebra are essential to thinking critically about both theoretical and applied statistics.

Density vs Likelihood

Definition: A random sample of size N is a set of N independent and identically distributed
(iid) observations X1 = x1, X2 = x2, . . ., Xn = xn.

Here’s a crude, graphical way of estimating the mean µ and variance σ2 of a normal distribution
from a random sample of data: Plot a histogram, choose an initial µ and σ and overlay the
corresponding density curve. Iteratively adjust µ and σ until it looks like a good fit. In R...

set.seed(661); ## See ?set.seed or ask me :-)

X=rnorm(100,10,2); ## 100 replicates drawn from Normal(mean=10,sd=2)

par(mfrow=c(1,3));

xvals = seq(min(X),max(X),length=100); # for plotting...

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,8,1),type="l")

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,9,1.75),type="l")

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,10,2),type="l")
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Formally, we’d like to compute some ‘‘goodness of fit” measure instead of just trusting our intuition
with what ‘‘looks like a good fit”. This might be the SSD (sometimes called the sum of squared
errors [SSE ]) from the OLS example above, but another options comes from some theoretical
results in mathematical statistics: the likelihood of parameters µ and σ given the data X. Here,
our estimates are the values of µ and σ that maximize the likelihood.

What is this likelihood? This is defined by the distribution for random vector X, but where we flip
around our notion of what’s fixed and what varies. That is, we treat the x values (our data) as
fixed, and our candidate parameter estimates µ and σ are treated as variable quantities. Let us
consider at a specific example to see how we define and use a likelihood function in practice.
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Example: Assume all Xi are iid with normal density f(xi;µ, σ). This implies the joint density
fX(x1, ..., xn;µ, σ) =

∏n
i=1 f(xi, µ, σ). Here we can write it as a simple product, thanks to the

independence of the individual random variables. This density function defines the likelihood
function for parmeters µ and σ

L(µ, σ;x) =
n∏
i=1

f(xi, µ, σ)

Note that we’ve gone from a function of n variables (number of data points) down to a function of 2
variables (number of parameters), and our domain is no longer the sample space but is instead the
range of possible parameters (µ ∈ R, σ ∈ R+). Plotting likelihood values over a range of possible
parameter values (here holding one parameter constant while varying the other) in R yields...

par(mfrow=c(1,2))

Lik=Vectorize(function(mu,sd,xs) prod(dnorm(xs,mean=mu,sd=sd)),"mu");

# fix sd=2, vary mu

curve(Lik(x,2,X),from=8,to=12, main="MEAN", xlab=expression(mu))

# fix mu, vary sd

Lik=Vectorize(function(mu,sd,xs) prod(dnorm(xs,mean=mu,sd=sd)),"sd");

curve(Lik(10,x,X),from=0,to=4, main="SD", xlab=expression(sigma))

# Optimization algorithms can then be used to refine estimates.
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The maximum likelihood estimates of µ and σ are the pair of values that yield the maximum
likelihood value. In this case, using the optim() function yields µ = 9.98 and σ = 1.88.

Concluding Remark: In this example, we are inferring the parameters for a single distribution
from our random sample of data. We do so by treating those data as a random vector -- a single
observation from a multivariate distribution. We typically do statistics by treating all of our
data as a single outcome from a joint distribution. Therefore, to have a deeper understanding of
Statistics, we need to understand Probability from a multivariate perspective.
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Random Vectors and Joint Densities

Joint densities describe probability distributions of random vectors. A random vector X is an
n-dimensional vector where each component is itself a random variable, i.e., X = (X1, X2, . . . , Xn),
where all Xis are rvs.

Discrete random vectors are described by the joint probability density function of Xi (or joint
pdf), i = {1, · · · , n} denoted by

P (X = x) = P (s ∈ S : Xi(s) = xi for all i) = pX(x1, .., xn)

Another name for the joint pdf of a discrete random vector is joint probability mass function (pmf).

Computing probabilities for discrete random vectors. For any subset A of R2, we have

P ((X, Y ) ∈ A) =
∑

(x,y)∈A

P (X = x, Y = y) =
∑

(x,y)∈A

pX,Y (x, y).

Continuous random vectors are described by the joint probability density function of X and Y
(or joint pdf) denoted by fX,Y (x, y). The pdf has the following properties:

1. fX,Y (x, y) ≥ 0 for every (x, y) ∈ R2.

2.
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy = 1.

3. For any region A in the xy-plane P ((X, Y ) ∈ A) =
∫ ∫

A
fX,Y (x, y)dxdy.

Marginal distributions. Let (X, Y ) be a continuous/discrete random vector having a joint
distribution with pdf/pmf f(x, y). Then, the one-dimensional distributions of X and Y are called
marginal distributions. We compute the marginal distributions as follows:
If (X, Y ) is a discrete vector, then the distributions of X and Y are given by:

fX(x) =
∑
all y

P (X = x, Y = y) and fY (y) =
∑
all x

P (X = x, Y = y).

If (X, Y ) is a continuous vector, then the distributions of X and Y are given by:

fX(x) =

∫ ∞
−∞

f(x, y)dy and fY (y) =

∫ ∞
−∞

f(x, y)dx.

Joint cdf of a vector (X, Y ). The joint cumulative distribution function of X and Y (or joint
cdf) is defined by

FX,Y (u, v) = P (X ≤ u, Y ≤ v).

Theorem. Let FX,Y (u, v) be a joint cdf of the vector (X, Y ). Then the joint pdf of (X, Y ), fX,Y ,

is given by second partial deriveative of the cdf. That is fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y), provided that

FX,Y (x, y) has continuous second partial derivatives.
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Independence Revisited

Definition. Two random variables are called independent if and only if (iff ) for any events A
and B in S, it follows that P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B).

Theorem. The random variables X and Y are independent iff

fX,Y (x, y) = fX(x)fY (y),

where f(x, y) is the joint pdf of (X, Y ), and fX(x) and fY (y) are the marginal densities of X and
Y , respectively.

NOTE: Random variables X and Y are independent iff FX,Y (x, y) = FX(x)FY (y), where F (x, y) is
the joint cdf of (X, Y ), and FX(x) and FY (y) are the marginal cdf’s of the X and Y , respectively.

Independence of more than 2 r.v.s A set of n random variables X1, X2, . . . , Xn are independent
iff their joint pdf is a product of the marginal pdfs. That is

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn)

where fX1,X2,...,Xn(x1, x2, . . . , xn) is the joint pdf of the vector (X1, X2, . . . , Xn), and fX1(x1),
fX2(x2), · · · , and fXn(xn) are the marginal pdf’s of the variables X1, X2, . . . , Xn.

Conditional Distributions Revisited

Let (X, Y ) be a random vector with some joint pdf or pmf. Consider the problem of finding the
probability that X=x AFTER a value of Y was observed. To do that we develop conditional
distribution of X given Y=y.
Definition. If (X, Y ) is a discrete random vector with pmf pX,Y (x, y), and if P (Y = y) > 0, then
the conditional distribution of X given Y=y is given by the conditional pmf

pX|Y=y(x) =
pX,Y (x, y)

pY (y)
.

Similarily, if P (X = x) > 0, then the conditional distribution of Y given X=x is given by the

conditional pmf pY |X=x(y) =
pX,Y (x,y)

pX(x)
.

Definition. If (X, Y ) is a continuous random vector with pdf fX,Y (x, y), and if fY (y) > 0, then
the conditional distribution of X given Y=y is given by the conditional pdf

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
.

Similarly, if fX(x) > 0, then the conditional distribution of Y given X=x is given by the conditional

pdf fY |X=x(y) =
fX,Y (x,y)

fX(x)
.

Independence and conditional distributions. If random variables X and Y are independent,
then their marginal pdf/pmf’s are the same as their conditional pdf/pmf’s. That is fY |X=x(y) = fY (y)
and fX|Y=y(x) = fX(x), for all y and x where fY (y) > 0 and fX(x) > 0, respectively.
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Expected Values, Variance, and Covariance Revisited

Definition: Let (X, Y ) be a random vector with pmf p (discrete) or pdf f (continuous). Let g be
a real valued function of (X, Y ). Then, the expected value of random variable g(X, Y ) is

E(g(X, Y )) =
∑
allx

∑
ally

g(x, y)p(x, y), in the discrete case, or

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy, in the continuous case,

provided that the sums and the integrals converge absolutely.

Mean of a sum of random variables. Let X and Y be any random variables, and a and b real
numbers. Then

E(aX + bY ) = aE(X) + bE(Y ),

provided both expectations are finite.

NOTE: Let X1, X2, . . . , Xn be any random variables with finite means, and let a1, a2, . . . , an be a
set of real numbers. Then

E(a1X1 + a2X2 + · · ·+ anXn) = a1E(X1) + a2E(X2) + · · ·+ anE(Xn).

Mean of a product of independent random variables. If X and Y are independent random
variables with finite expectations, then E(XY ) = E(X)E(Y ).

Variance of a sum of independent random variables.
Let X1, X2, . . . , Xn be any independent random variables with finite second moments (i.e. E(X2

i ) <
∞). Then

V ar(X1 +X2 + · · ·+Xn) = V ar(X1) + V ar(X2) + · · ·+ V ar(Xn).

NOTE: Let X1, X2, . . . , Xn be any independent random variables with finite second moments, and
let a1, a2, . . . , an be a set of real numbers. Then

V ar(a1X1 + a2X2 + · · ·+ anXn) = a21V ar(X1) + a22V ar(X2) + · · ·+ a2nV ar(Xn).

Definition: The covariance of two jointly distributed random variables X and Y is defined as

cov(X, Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y )

Sometimes the notation σ(X, Y ) is used instead of cov(X, Y ).

Definition: The variance-covariance matrix cov(X,Y) for random vectors X and Y is

cov(X,Y) = E((X− E(X)) (Y − E(Y))T ) = E(XYT)− E(X)E(Y)T

The ijth entry in the covariance matrix is the covariance between Xi and Yj. If X = Y, we often
use the notation cov(X) = cov(X,X). The diagonal entries of σ(X) are [V ar(X1), . . . , V ar(Xn)].
The notation σ(X,Y) or sometimes Σ(X,Y) is often used for cov(X,Y).

Definition: The correlation random variables X and Y is a standardized covariance:

corr(X, Y ) =
E((X − E(X))(Y − E(Y )))√

V ar(X)
√
V ar(Y )

=
cov(X, Y )

sd(X) sd(Y )
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Combining Random Variables: Sums, Products, Quotients

Let X and Y be independent random variables with pdf or pmf’s fX and fY or pX and pY ,
respectively. Then...

If X and Y are discrete random variables, then the pmf of their sum W = X+ Y is

pW (w) =
∑
allx

pX(x)pY (w − x).

If X and Y are continuous random variables, then the pdf of their sum W = X+ Y is the convolution
of the individual densities:

fW (w) =

∫ ∞
−∞

fX(x)fY (w − x)dx.

If X and Y are independent continuous random variables, then the pdf of their quotientW = Y/X
is given by:

fW (w) =

∫ ∞
−∞
| x | fX(x)fY (wx)dx.

The above formula is valid, if X is equal to zero in at most a set of isolated points (no intervals).

If X and Y are independent continuous random variables, then the pdf of their product W = XY
is given by:

fW (w) =

∫ ∞
−∞

1

| x |
fX(w/x)fY (x)dx.
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Special Distributions

Some useful distributions are ‘‘special” enough to be named. They include: Poisson, exponential,
Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distribu-
tions. We already saw and used exponential, Binomial and hypergeometric distributions. We will
now explore the definitions and properties of the other ”special” distributions.

Things to remember when learning probability distributions:

Mathematical Details

1. Is it continuous, or discrete?
What’s the sample space?

2. Density(mass) function?
Parameter ranges?

3. Expected value formula? Variance?

Application Context

1. Corresponding experiment?
Cartoon example?

2. Any common applications?
Why is it ‘‘special” or useful?

3. Relationships to other distributions?

Bernoulli. Sample space {0, 1}, mean p, variance p(1− p), and mass function

px = px(1− p)1−x

Binomial. The number of successes in n Bernoulli(p) trials. Discrete random variable with sample
space {0, . . . , n}, and mass function (with parameters n, p) given by

px =

(
n

k

)
px(1− p)n−x

The mean is np and the variance is np(1− p).

Multinomial (Generalized Binomial). Discrete random variable for the number of each of
k types of outcomes in n trials. Sample space {0, ..., n}k, and mass function (with parameters
n,p1,...,pk where the

∑
pi = 1) given by

px1,...,xk =
n!

x1! · · · xk!
px11 · · · p

xk
k

The marginals are binomial, thus the means are E(Xi) = npi and the variances are V ar(Xi) =
npi(1− pi).

Hypergeometric. Discrete r.v. with sample space {0, ..., w}, and mass function (with parameters
N , w, n) given by

px =

(
w
x

)(
N−w
n−x

)(
N
n

)
The mean is nw/N and the variance is nw/N(1− w/N)(N − n)/(N − 1).

Generalized Hypergeometric. Discrete random variable with parameters n, n1, ..., nk,
∑
ni =

N , with mass function

px1,...,xk =

(
n1

x1

)
· · ·
(
nk
xk

)(
N
n

)
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The marginals are Hypergeometric.

Uniform (Continuous). Discrete Continuous random variable with sample space {}, and density
function

fx = (b− a)−1

The mean is (b+ a)/2 and the variance is (b− a)2/12.

Poisson distribution. Discrete random variable with λ > 0, mass function

P (X = k) =
e−λ(λk)

k!
for k = 0, 1, 2, . . . .

The mean and variance are the same, namely E(X) = V ar(X) = λ.

Poisson Approximation to Binomial distribution. Let X ∼ Bin(n, p) be a binomial random
variable with number of trials n and probability of success p. Then, for large n and small p, that is
when n→∞ and p→ 0 in such a way that np = λ is held constant, we have

lim
n→∞,p→0

P (X = k) =
e−np(np)k

k!
=
e−λ(λ)k

k!
.

For large values of n, small p, we can therefore approximate the Binomial distribution with a

Poisson distribution: P (X = k) ≈ e−np(np)k

k!
.

Poisson Model. Suppose events can occur in space or time in such a way that:

1. The probability that two events occur in the same small area or time interval is zero.

2. The events in disjoint areas or time intervals occur independently.

3. The probability than an event occurs in a given area or time interval T depends only on the
size of the area or length of the time interval, and not on their location.

Poisson Process. Suppose that events satisfying the Poisson model occur at the rate λ per unit
time. Let X(t) denote the number of events occuring in time interval of length t. Then

P (X = k) =
e−λt(λt)k

k!
.

X(t) is called Poisson process with rate λ.

Exponential Continuing from above, the waiting time Y between consecutive events has an
exponential distribution with parameter λ (that is with mean 1/λ), that is P (Y > t) = e−λt, t > 0,
or equivalently,

f(t) = λe−λt, for t > 0.

The mean is 1/λ and the variance is 1/λ2.
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Geometric and Negative Binomial Distributions

Geometric experiment: Toss a fair coin until the first H appears. Let X=number of tosses
required for the first H. Then X has geometric distribution with probability of success 0.5.

Definition: Geometric distribution. A random variable X has a geometric distribution with
parameter p if its pmf is

P (X = k) = (1− p)k−1p, for k = 1, 2, 3, . . . .

It is denoted X ∼ Geo(p). The mean and variance of a geometric distribution are EX = 1/p and

V ar(X) = 1−p
p2

, respectively. The mgf of X is MX(t) = pet

1−(1−p)et .

Memoryless property of geometric distribution. Let X ∼ Geo(p), then for any n and k, we
have

P (X = n+ k | X > n) = P (X = k).

Negative Binomial experiment. Think of geometric experiment performed until we get r
successes. Let X = number of trials until we have r successes.

Definition: Geometric distribution. A random variable X has a negative binomial distribution
with parameters r and p if its pmf is

pX(k) = P (X = k) =

(
k − 1
r − 1

)
(1− p)k−rpr, for k = r, r + 1, r + 2, . . . .

A common notation for X is X ∼ NegBin(r, p). The mean and variance of X are EX = r/p and

V arX = r(1−p)
p2

. The mgf of X is MX(t) =
[

pet

1−(1−p)et

]r
.

Connection between negative binomial and geometric distributions. If X1, X2, . . . , Xr

are iid Geo(p), then
∑r

i=1Xi ∼ NegBin(r, p).
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Exponential and Gamma Distributions

Definition. The Gamma function. For any positive real number r > 0, the gamma function
of r is denoted Γ(r) and equal to

Γ(r) =

∫ ∞
0

yr−1e−ydy.

Theorem. Properties of Gamma function. The Gamma(r) function satifies the following
properties:

1. Γ(1) = 1.

2. Γ(r) = (r − 1)Γ(r − 1).

3. For r integer, we have Γ(r) = (r − 1)!.

Definition of the Gamma random variable. For any real positive numbers r > 0 and λ > 0,
a random variable with pdf

fX(x) =
λr

Γ(r)
xr−1e−λx, x > 0,

is said to have a Gamma distribution with parameters r and λ, denoted X ∼ Γ(r, λ).
Theorem: moments and mgf of a gamma distribution. If X ∼ Γ(r, λ) then

1. EX= r/λ.

2. Var(X)= r/λ2.

3. Mgf of X is MX(t) = (1− t/λ)r.

Theorem. Let X1, X2, . . . , Xn be iid exponential random variables with parameter λ, that is with
mean 1/λ. The the sum of Xi’s has a gamma distribution with parameters n and λ. More precisely,∑n

i=1Xi ∼ Γ(r, λ).

Theorem. A sum of independent gamma random variables X ∼ Γ(r, λ) and Y ∼ Γ(s, λ) with the
same λ has a gamma distribution with r′ = r + s and the same λ. That is X + Y ∼ Γ(r + s, λ).

Note: In a sequence of Poisson events occurring with rate λ per unit time/area, the waiting time
for the r’th event has a Γ(r, λ) distribution.

25



Normal (Gaussian) Distribution

Normal (Gaussian) distribution. Continuous random variable X has a normal distribution
with mean µ and variance σ2 if its pdf is of the form:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where µ and σ2 are real valued constants. If X has pdf as above, we denote it: X ∼ N(µ, σ2). The
mgf of X is MX(t) = eµt+σ

2t2/2, for any real t.
The normal pdf is bell shaped and centered around the mean µ. There is a special Normal
distribution with mean 0 and variance 1, called standard normal distribution, and denoted by
Z ∼ N(0, 1). The standard normal pdf is

f(z) =
1√
2π
e−

x2

2 .

The values of the standard normal cdf are tabulated. To find probabilities related to general normal
random variables, use the following fact:

Theorem. If X ∼ N(µ, σ2), then Z = X−µ
σ
∼ N(0, 1).

Theorem: Linear combinations of independent normal r.v.s are themselves normal.

1. Let X1 ∼ N(µ1, σ
2
1), and X2 ∼ N(µ2, σ

2
2), with X1 and X2 independent. Then X1 ±X2 ∼

N(µ1 ± µ2, σ
2
1 + σ2

2), and more generally:

2. Let Xi ∼ N(µi, σ
2
i ), for i = 1, . . . , n, and Xi’s ind. Then Y =

∑n
i=1Xi ∼ N(

∑n
i=1 µi,

∑n
i=1 σ

2
i ),

and

3. For any real numbers a1, a2, . . . an, Y =
∑n

i=1 aiXi ∼ N(
∑n

i=1 aiµi,
∑n

i=1 a
2
iσ

2
i ).

4. Let Xi ∼ N(µ, σ2) iid for i = 1, . . . , n. Then X̄ ∼ N(µ, σ2/n).

Normal Approximation to Binomial. Let X ∼ Bin(n, p) and Y ∼ N(np, np(1 − p)). Then
for large n

P (a ≤ X ≤ b) ≈ P (a ≤ Y ≤ b).

Continuity correction for the normal approximation to binomial. To ”correct” for the
fact that binomial is discrete and normal is a continuous distribution, we do the following correction
for continuity: P (X = x) ≈ P (x− 0.5 < Y < x+ 0.5).
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Convergence Concepts & Laws of Large Numbers

Before discussing the Central Limit Theorem (CLT), Weak Law of Large Numbers (WLLN) and
Strong Law of Large Numbers (SLLN) it helps to know some different convergence concepts that
exist in probability (and measure theory).

We begin with two results that help us bound probabilities when only the mean is known:

Markov Inequality: For any non-negative valued r.v. Y with E(Y ) = µ, then for a > 0

P (Y ≥ a) ≤ E(Y )

a
.

Proof (finite-variance, continuous case):

E(Y )

a
=

1

a

∫ ∞
0

y f(y) dy ≥ 1

a

∫ ∞
a

y f(y) dy ≥ 1

a

∫ ∞
a

a f(y) dy = P (Y ≥ a) �

Chebychev Inequality: For r.v. X with E(X) = µ and V ar(X) = σ2 <∞, then for any k > 0
the probability that X deviates more than k from the mean is bounded by

P (|X − µ| ≥ k) ≤ σ2

k2

Sketch of Proof: Apply the Markov Inequality using Y = (X − µ)2 and a = k2.

Convergence Concepts in Probability

Definition: The r.v.s Xn converge in distribution to r.v. X (Xn
D→ X) if

lim
n→∞

FXn(x) = FX(x)

for all x where FX(x) is continuous. This is point-wise convergence of cdfs.

Definition: The r.v.s Xn converge in probability to r.v. X (Xn
P→ X) if, for all ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0 ⇔ lim
n→∞

P (|Xn −X| ≤ ε) = 1.

This convergence of probability values is in measure theory called convergence in measure.

Definition: The r.v.s Xn converges almost surely to r.v. X (Xn
a.s.→ X) if for all ε > 0

P
(

lim
n→∞

|Xn −X| ≤ ε
)
≡ P

(
{all ω ∈ S such that lim

n→∞
|Xn(ω)−X(ω)| ≤ ε}

)
= 1

In measure theory, almost everywhere means a statement holds true for all but a set of measure zero.
Thinking of random variables as functions on our sample space, this is just pointwise convergence
of the random variables except perhaps on some set of measure zero.

Theorem: If Xn converges almost surely to X, then it also converges in probability. If Xn

converges in probability to X, the it also converges in distribution.
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Example 1 (Convergence in probability, but not almost surely.)
Let U be uniform on [0,1], and define the sequence of random variables Yn to all depend directly on
U according to Yn = U + 1An(U) where intervals An are defined as the nth interval in the sequence
[0,1/2], [1/2,1], [0,1/3], [1/3,2/3], [2/3,1], [0,1/4],... That is, for observation U = u, Yn = u+ 1 if
u ∈ An, otherwise Yn = u. Note these r.v.s Yn are not independent, since each depends directly
on U ! Observing that, as n→∞, the width of interval An → 0, it follows that Yn converges in
probability to U since

lim
n→∞

P (|Yn − U | ≥ ε) = lim
n→∞

P (U ∈ An) = 0.

But for a given outcome U = u, Yn(u) never converges since for any N > 0 there is always some
k > N where Yk(u) = 1 + u.

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

U

Y7 − U

0
1

0 1

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

U

Y8 − U

0 1

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

U

Y9 − U

0 1

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

U

Y10 − U

0 1

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

U

Y11 − U

0 1

Since |Yn − U | converges nowhere on [0,1],

P
(

lim
n→∞

|Yn − U | ≤ ε
)

= P (∅) = 0 6= 1

That is, there is no almost sure convergence.

Example 2 (Convergence in distribution, but not in probability.)
Let X be a standard Normal r.v. (E(X) = 0, V ar(X) = 1). Let Xn = −X for all n. Then all Xn

and X have the same distribution (i.e., FXn(x) = FX(x) for all x and n), so trivially Xn converges
in distribution to X. However, for ε > 0, symmetry gives that

P (|Xn −X| ≥ ε) = P (|2X| ≥ ε) = P (|X| ≥ ε/2) = P

(
X /∈

[
−ε
2
,
ε

2

])
.

Since P
(
X /∈

[−ε
2
, ε
2

])
> 0 for all ε > 0, it follows that

lim
n→∞

P (|Xn −X| ≥ ε) = P

(
X /∈

[
−ε
2
,
ε

2

])
> 0.

Therefore Xn does not converge in probability to X.
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Laws of Large Numbers

Weak Law of Large Numbers (WLLN): Let Xi be iid with mean µ. Then Xn =
∑n

i=1Xi

converges in probability to µ, i.e., Xn
P→ µ. That is, for all positive ε near zero,

lim
n→∞

P (|Xn − µ| ≥ ε) = 0 ⇔ lim
n→∞

P (|Xn − µ| ≤ ε) = 1.

Proof (when V ar(X) = σ2 <∞): Apply the Chebychev Inequality. This was first proven in the
1700s by Bernoulli, and incrementally generalized by Markov then Chebychev.

Strong Law of Large Numbers (SLLN): Let Xi be iid with mean µ, and let Xn =
∑n

i=1Xi.
Then Xn converges almost surely to µ. That is, for all positive ε near zero,

P
(

lim
n→∞

|Xn − µ| ≥ ε
)

= 0 ⇔ P
(

lim
n→∞

|Xn − µ| ≤ ε
)

= 1.

NOTE: Borel gave the first proof of the SLLN, 200 years later, in 1909. It was incrementally
improved by Cantelli, Khintchine (who named it the SLLN) and Kolmogorov (in the 1930s).

Weak vs Strong: Accordingly, almost sure convergence is called a stronger form of convergence
than convergence in probability, and convergence in distribution is even more weak.

NOTE: The WLLN and SLLN basically both state that the average of n iid random variables
(with mean µ < ∞) converges to µ as n → ∞. The Weak LLN states this in the weaker form

(Xn
P→ µ), while the Strong LLN states this in the (stronger) form (Xn

a.s.→ µ).

Central Limit Theorems (CLTs)

Classic CLT (Lindberg-Levy): Suppose random variables X1, ..., Xn are (1) independent and
(2) identically distributed (iid) with (3) finite mean E(Xi) = µ and (4) finite variance V ar(Xi) = σ2.
Then the quantity

Sn =

√
n

σ

(
1

n

(
n∑
i=1

Xi

)
− µ

)
converges in distribution to a standard Normal r.v., i.e., Sn

D→ N (0, 1).

NOTE: Other CLTs relax the iid assumptions, but require additional conditions that must be
met. The Lyapunov CLT, for example, relaxes the assumption of identical distributions:

CLT (Lyapunov): Suppose r.v.s X1, ..., Xn are (1) independent, (2) each have finite mean
E(Xi) = µi and (3) variance V ar(Xi) = σ2

i . Define sn =
√∑n

i=1 σ
2
i . Then the quantity

Sn =
1

sn

n∑
i=1

(Xi − µi)

converges in distribution to a standard Normal if the following condition holds for some δ > 0
(usually checking δ = 1 is all it takes):

lim
n→∞

1

s2+δn

n∑
i=1

E
(
|Xi − µi|2+δ

)
= 0.
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