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Checking Assumptions

Remember: Estimates, confidence intervals, p-values,
etc. are all meaningless if you’re using the wrong model!

Diagnostics help identify violations of your model assumptions.

SLR Model Assumptions:
1 All data follow Y |X = xi ∼ N(β0 + β1 xi , σ), hence
E (Y |X = xi) = β0 + β1 xi

2 Normal errors: ei ∼ N(0, σ)
3 Independent errors ei
4 Var(Y |X = xi) = Var(ei) = σ2

Many problems lead to outliers and high leverage points.
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Residuals êi = yi − ŷi ≈ ei
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Standardized Residuals

Recall that ei ∼ N(0, σ), which means that standardizing
zi = ei/σ (by dividing by the standard deviation) would yield
values that follow a Normal(0,1) distribution (if we knew σ!):
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Leverage & “Hat” values (hij)

Observe that

ŷi =
n∑

j=1

hijyj

where

hij =
1

n
+

(xi − x̄)(xj − x̄)∑n
k=1(xk − x̄)2

,

n∑
j=1

hij = 1, and
n∑

i=1

hii = 2

We call hii the leverage of the i th data point.

Note hii = 2
n

. A high leverage point is 2x that mean: hii >
4
n

.
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“Hat” values (hij)

Side Note: These “hat” values form a matrix H which gives

ŷ = Hy

and these values show up in many places!

Var(ŷi) = σ2hii

Alternative definition: hij =
cov(ŷi ,yj )

var(yj )

Residuals, in matrix notation: r = (I −H)y

Properties: H is symmetric, H2 = H, HX = X

Similar H matrices for other models may not have all
these properties.

Want more? See online resources and publications such as
Hoaglin and Welsch. 1978. The Hat Matrix in Regression and ANOVA.
http://www.stat.ucla.edu/~cocteau/stat201b/handout/hat.pdf

http://www.stat.ucla.edu/~cocteau/stat201b/handout/hat.pdf
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Standardized Residuals

Recall ei/σ ∼Normal(0,1), BUT we don’t know σ!

Using our estimate, S , in it’s place (and some algebra to show
that Var(êi) = σ2(1− hii)) yields standardized residuals ri :

ri =
êi

S
√

1− hii

These can be more informative to look at than residual plots,
especially if high leverage points exist.
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Normal Quantile-Quantile Plots

In place of a Shapiro-Wilk test, plot Standardized Residuals
versus the Expected Values of the Order Statistics for a
Normal(0,1) distribution. See shapiro.test() & qqnorm().

qqnorm(fit1$residuals)
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Leave-one-out Diagnostics

Another approach to identifying problem data points (with
problematic influence) is to compare estimates with and
without them. For example, if ŷj(i) is the estimate of ŷj with
the j th data point removed...

Cook’s Distance:

Di =

∑n
i=1(ŷj(i) − ŷj)

2

2S2
= · · · =

r 2i
2

hii
1− hii

Roughly speaking, scrutinize points with Di >
4

n−2
or values

that deviate markedly from the other distances.
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Summary Remark

“Bad” leverage points are high leverage points that are also
outliers – they signal a problem with your model!

The two main approaches to fixing that problem:
1 Omit the data point from the data set, or
2 Redo your analysis using a more appropriate model.

This is often the preferred approach.
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