Equilibrium Stability

Dynamical Systems: Introduction Mathematical Modeling (Math 420/620)

Paul J. Hurtado

November 8, 2017

Overview

Building Dynamic Models, ODEs

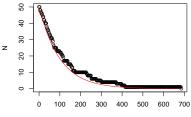
• Mean Field Equations & "Bathtub" Models

Analysis of Dynamic Models (Topic Overview)

- State Space & Vector Fields
- Asymptotic Behavior: What happens as $t \rightarrow \infty$? Parameter dependence?
- Equilibrium Stability Analysis
- Other dynamics? Bifurcation Theory
- Other Attractors: Limit Cycles, etc.
- Sensitivity Analysis & Simulation

Example: Exponential Decay

```
## Ex: tracking atoms experiencing radioactive decay
Ts=sort(rexp(50,1/100))
Time=seq(0,max(Ts),length=300)
N=Time*0; # counts of atoms at time t go here.
N[1]=50;
for(i in 2:300) { N[i]=sum(Ts > Time[i]) } # number not yet decayed
plot(Time,N); curve(50*(exp(-x/100)),0,max(Ts),add=TRUE,col="red")
```

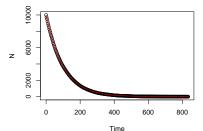


Time

Equilibrium Stability

Example: Exponential Decay

```
## Ex: tracking atoms experiencing radioactive decay
Ts=sort(rexp(1e4,1/100))
Time=seq(0,max(Ts),length=300)
N=Time*0; # counts of atoms at time t go here.
N[1]=1e4;
for(i in 2:300) { N[i]=sum(Ts > Time[i]) } # number not yet decayed
plot(Time,N); curve(1e4*(exp(-x/100)),0,max(Ts),add=TRUE,col="red")
```



Models & Terminology

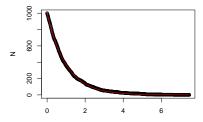
Equilibrium Stability

Example: Exponential Decay as Stochastic Map

Simulate as a discrete map with a Binomial # of atoms decaying each time step, i.e.,

$$N(t + dt) = N(t) - rbinom(1, n = N(t), prob = r * dt)$$

```
N0=1e3; dt=1/100; r=1; N=c(NO); i=1;
while(N[i] > 0) { N[i+1]=N[i]-rbinom(1,N[i],r*dt); i=i+1; } # number no
Time=dt*(1:length(N))-dt; plot(Time,N,xlab="Time");
curve(N0*(exp(-r*x)),0,dt*length(N),add=TRUE,col="red")
```



Implicit Assumptions?

Which (implicit) assumptions were made? Which could be relaxed?

Spatially structured interactions?

```
Small N vs N \to \infty?
```

Time-dependent or N-dependent rate?

Others?

Good rule of thumb with ODE models:

Implicit assumptions typically ignore spatial interactions, stochastic variation and/or small numbers of individuals, and/or the discrete nature of individuals.

Mean Field Equations: Applying LLN, CLT

Example: Suppose there are N_0 atoms of radioactive ${}^{238}_{92}$ U. Over time interval Δt each can decay w.p. $\lambda \Delta t$.

Let N(t) be the number of uranium atoms. The number lost during time interval $[t, t + \Delta t]$ is approximately a binomial random variable with parameters n = N(t) and $p = \lambda \Delta t$. Thus, the expected number lost is $n p = \lambda N(t) \Delta t$.

Assuming N_0 is large, then the Law of Large Numbers (LLN) allows us to claim $N(t + \Delta t) - N(t) \approx -\lambda N(t) \Delta t$. Taking $\Delta t \rightarrow 0$ we can derive the **mean field** model:

$$\frac{dN(t)}{dt} = -\lambda N(t), \qquad N(0) = N_0$$

Mean Field Equations

Example: Suppose there are U_0 atoms of radioactive ${}^{238}_{92}$ U. Over time interval Δt each can decay w.p. $\lambda_{\alpha}\Delta t$ to ${}^{234}_{90}$ Th and α particle ${}^{4}_{2}$ He. Thorium-234 can then decay via loss of a β particle (positron) to protactinium-234 w.p. $\lambda_{\beta}\Delta t$.

Let T(t) be the number of thorium atoms, and P(t) the number of protactinium atoms. We can now use the model

$$egin{aligned} rac{dU(t)}{dt} &= -\lambda_lpha U(t) \ rac{dT(t)}{dt} &= \lambda_lpha U(t) - \lambda_eta T(t) \ rac{dP(t)}{dt} &= \lambda_eta T(t) \end{aligned}$$

Exercise

Derive the following UTP model

$$egin{aligned} rac{dU(t)}{dt} &= -\lambda_lpha U(t) \ rac{dT(t)}{dt} &= \lambda_lpha U(t) - \lambda_eta T(t) \ rac{dP(t)}{dt} &= \lambda_eta T(t) \end{aligned}$$

- Write a discrete time map (step size Δt) that models the numbers of atoms transitioning states in each time step using Binomial distributions.
- **2** Use the LLN to find the corresponding mean-field map.
- **3** Take the limit as $\Delta t \rightarrow 0$ to find the continuous time (ODE) approximation of this mean-field discrete map.

Models & Terminology

Equilibrium Stability

ODEs: "Bathtub" Models

Model the "flow" of mass from one compartment to another:

$$\frac{dU(t)}{dt} = -\lambda_{\alpha}U(t)$$

$$\frac{dT(t)}{dt} = \lambda_{\alpha}U(t) - \lambda_{\beta}T(t)$$

$$\frac{dP(t)}{dt} = \lambda_{\beta}T(t)$$
P

A.

Intuition for ODE model terms

- Recall the 5-step process! Question? Assumptions? Simplify, etc...
- ODE models often average over heterogeneity, space, etc.
- Linear terms correspond to exponential decay rates.
- More complex transition rates? Derive¹ terms accordingly.

¹Remember: Lie, Cheat, Steal! (see Ch. 9 in Ellner & Guckenheimer)

Dynamic Model (ODE) Basics

Suppose $\mathbf{x} \in \mathbb{R}^n$, functions $f = [f_1, f_2, \dots, f_n]$ are *smooth*², and

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \qquad \mathbf{x}(0) = \mathbf{x_0}$$

State Variables: $\mathbf{x} = [x_1, x_2, \dots, x_n]$ Initial Conditions: \mathbf{x}_0 State Space: $S \subseteq \mathbb{R}^n \ (n = \# \text{ of state var.})$ Vector Field:fParameter Space:Ex: \mathbb{R}^{n^2} for a full linear system.Trajectory/Orbit:Solutions $\mathbf{x}(t)$ to the above IVP.

 $^{^2 \}mbox{Continuous partial derivatives near x_0 guarantee existence, uniqueness of solutions.}$

Examples

What are the state variables? State space? Parameter space? 1. dx

$$\frac{dx}{dt} = r x (1 - x/K)$$
$$\frac{dN}{dt} = r N (1 - (N/K)^{\theta})$$

$$\frac{du}{d\tau}=u\left(1-u^{\theta}\right)$$

Λ	
4	

2.

3.

$$\dot{H} = r_H H - a_H H^2 - b_H S H$$
$$\dot{S} = r_S S - a_S S^2 - b_S H S$$

Equilibria

Trajectories are often categorized by **qualitative properties** (e.g. steady-state vs. cycling vs. chaos) of their **asymptotic behavior** (i.e., what do solutions look like as $t \to \infty$?).

Equilibrium solutions are the natural place to begin studying those asymptotic properties.

Definition An **equilibrium** of $\frac{d\mathbf{x}}{dt} = f(\mathbf{x})$ is any *constant* solution $\mathbf{x}(t) = \mathbf{x}_*$ which therefore satisfies $f(\mathbf{x}_*) = 0.$

Models & Terminology

Equilibrium Stability

Equilibria

Find all equilibrium solutions to each of the following ODEs:

1.
$$\frac{dN}{dt} = r N$$

2.
$$\frac{dx}{dt} = K - x$$

3.
$$\frac{dx}{dt} = x (K - x)$$

4.
$$\frac{dx}{dt} = r x (1 - \frac{x}{K})$$

5.
$$\frac{dx}{dt} = x (1 - x)(a - x)$$

6.
$$\frac{dx}{dt} = \sin(x)$$

Equilibrium Stability

Stability Concepts

We say x_∗ is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x_∗ (i.e., x(t) → x_∗ as t → ∞).

Stability Concepts

- We say x_{*} is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x_{*} (i.e., x(t) → x_{*} as t → ∞).
- We call x_{*} globally asymptotically stable (GAS) (or ...) if all trajectories converge to x_{*}.

Equilibrium Stability

Stability Concepts

- We say x_{*} is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x_{*} (i.e., x(t) → x_{*} as t → ∞).
- We call x_{*} globally asymptotically stable (GAS) (or ...) if all trajectories converge to x_{*}.
- We say x_{*} is Lyapunov Stable if trajectories that start near it stay near x_{*}.

Stability Concepts

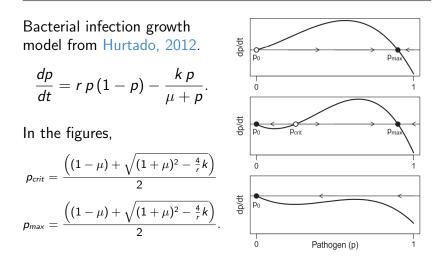
- We say x_{*} is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x_{*} (i.e., x(t) → x_{*} as t → ∞).
- We call x_{*} globally asymptotically stable (GAS) (or ...) if all trajectories converge to x_{*}.
- We say x_{*} is Lyapunov Stable if trajectories that start near it stay near x_{*}.
- We call x_{*} neutrally stable if it is Lyapunov Stable but not attracting.

Models & Terminology

Equilibrium Stability

Phase Space & 1-D Vector Fields

Phase Space: Horizontal axis x, vertical axis $\frac{dx}{dt}$.



Equilibrium Stability

Theorem

(1D) An equilibrium x_* of $\dot{x} = f(x)$ is locally asymptotically stable if

 $f'(x_*) < 0$

and is unstable if

 $f'(x_*) > 0.$

Equilibrium Stability

Theorem

(1D) An equilibrium x_* of $\dot{x} = f(x)$ is locally asymptotically stable if

 $f'(x_*) < 0$

and is unstable if

 $f'(x_*) > 0.$

Sketch of Proof.

If $u = x - x_*$, and f is smooth near x_* then u = 0 is an equilbrium of $\dot{u} \approx f'(x_*) u$ which has (approximately) exponential solutions that grow away from (or decay towards) 0 depending on the sign of $f'(x_*)$.

Models & Terminology

Equilibrium Stability

Phase Space & 1-D Vector Fields

Sketch the *phase portrait* for each of the following, and use it to determine the stability of each equilibrium point:

1.
$$\frac{dx}{dt} = K - x$$

2.
$$\frac{dx}{dt} = x (K - x)$$

3.
$$\frac{dx}{dt} = r x (1 - \frac{x}{K})$$

4.
$$\frac{dx}{dt} = x (1 - x)(a - x)$$

5.
$$\frac{dx}{dt} = \sin(x)$$

Equilibrium Stability

Theorem

An equilibrium \mathbf{x}_* of $\dot{\mathbf{x}} = f(\mathbf{x})$ is locally asymptotically stable (LAS) if the Jacobian matrix \mathbf{J} (where $J_{ij} = \frac{\delta f_i}{\delta x_j}$) evaluated at \mathbf{x}_* has eigenvalues with negative real parts. That is, x_* is LAS if $Re(\lambda_i) < 0$ for each of the n eigenvalues of matrix $\mathbf{J}(\mathbf{x}_*)$.

Equilibrium Stability

Theorem

An equilibrium \mathbf{x}_* of $\dot{\mathbf{x}} = f(\mathbf{x})$ is locally asymptotically stable (LAS) if the Jacobian matrix \mathbf{J} (where $J_{ij} = \frac{\delta f_i}{\delta x_j}$) evaluated at \mathbf{x}_* has eigenvalues with negative real parts. That is, x_* is LAS if $Re(\lambda_i) < 0$ for each of the n eigenvalues of matrix $\mathbf{J}(\mathbf{x}_*)$.

Sketch of Proof:

Consider the linear approximation of the vector field around \mathbf{x}_* . Then for a small neighborhood of \mathbf{x}_* ,

$$\dot{\mathbf{x}} = f(\mathbf{x}) pprox \mathbf{J}(\mathbf{x}_*) \mathbf{x}.$$

Let $\mathbf{u} = \mathbf{x} - \mathbf{x}_*$ and $\mathbf{A} = \mathbf{J}(\mathbf{x}_*)$, then

 $\dot{u}\approx A\,u$

If A is full rank then ...

Sketch of Proof (cont'd):

... let **Q** be the matrix whose columns are the eigenvectors of **A**, and let $\mathbf{D} = (\lambda_1, ..., \lambda_n)$. Then doing a standard change-of-coordinates

```
 \begin{split} \dot{\mathbf{u}} = & \mathbf{Q} \, \mathbf{D} \, \mathbf{Q}^{-1} \, \mathbf{u} \\ \mathbf{Q}^{-1} \, \dot{\mathbf{u}} = & \mathbf{D} \, \mathbf{Q}^{-1} \, \mathbf{u} \\ \dot{\mathbf{y}} = & \mathbf{D} \, \mathbf{y} \end{split}
```

which implies $\dot{y}_i = \lambda_i y_i$ and thus

 $y_i(t) = y_i(0) \exp(\lambda_i t).$

Therefore, trajectories that begin sufficiently close to equilibrium x_* will approximately grow or decay at rate $Re(\lambda_i)$ along the corresponding eigenvectors of $J(x_*)$.

Models & Terminology

Equilibrium Stability

Equilbrium Stability

Find all equilibrium solutions to each of the following ODEs:

1.
$$\frac{dx}{dt} = K - x$$

2.
$$\frac{dx}{dt} = x (1 - x)(a - x)$$

Equilibrium Stability

Two-species Competition (MMM Ex. 4.1)

$$\dot{H} = r_H H - a_H H^2 - b_H S H$$

 $\dot{S} = r_S S - a_S S^2 - b_S H S$

Predator-Prey

$$\dot{x} = r x (1 - x) - \frac{a x y}{k + x}$$
$$\dot{y} = \frac{a x y}{k + x} - y$$

Two-species Competition

Goal: When can the two tree species coexist?

$$\dot{H} = r_H H - a_H H^2 - b_H S H$$
$$\dot{S} = r_S S - a_S S^2 - b_S H S$$

State Variables: (State Space is non-negative orthant in \mathbb{R}^2) H(t), S(t) - Hardwood & Softwood population size (tons/acre)

Rates: (Units are tons/acre/year) $g_H(t) = r_H H - a_H H^2$ Hardwood growth rate $g_S(t) = r_S S - a_S S^2$ Softwood growth rate $c_H(t) = b_H S H$ - Competitive impact on Hardwoods $c_S(t) = b_S S H$ - Competitive impact on Softwoods **Parameters:** intrinsic growth rate r_i , intraspecific competition coefficients a_i , and interspecific competition coefficient b_i .

Models & Terminology

Equilibrium Stability

Overview: Dynamic Models (ODEs)

Let

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \qquad \mathbf{x}(0) = \mathbf{x_0}$$

where $\mathbf{x}(t) \in \mathbb{R}^n \ \forall t \in \mathbb{R}$, and f is smooth.

Common Question in Applications:

What are the asymptotic dynamics of this model?

Approach: (1) Equilibrium Stability Analysis and (2) Bifurcation Analysis³

³We'll only briefly see bifurcation theory in this course. For more on the subject, I highly recommend Dynamical Systems & Chaos by Steve Strogatz.