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Overview

Building Dynamic Models, ODEs

Mean Field Equations & “Bathtub” Models

Analysis of Dynamic Models (Topic Overview)

State Space & Vector Fields

Asymptotic Behavior: What happens as
t →∞? Parameter dependence?

Equilibrium Stability Analysis

Other dynamics? Bifurcation Theory

Other Attractors: Limit Cycles, etc.

Sensitivity Analysis & Simulation
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Example: Exponential Decay

## Ex: tracking atoms experiencing radioactive decay

Ts=sort(rexp(50,1/100))

Time=seq(0,max(Ts),length=300)

N=Time*0; # counts of atoms at time t go here.

N[1]=50;

for(i in 2:300) { N[i]=sum(Ts > Time[i]) } # number not yet decayed

plot(Time,N); curve(50*(exp(-x/100)),0,max(Ts),add=TRUE,col="red")
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Example: Exponential Decay

## Ex: tracking atoms experiencing radioactive decay

Ts=sort(rexp(1e4,1/100))

Time=seq(0,max(Ts),length=300)

N=Time*0; # counts of atoms at time t go here.

N[1]=1e4;

for(i in 2:300) { N[i]=sum(Ts > Time[i]) } # number not yet decayed

plot(Time,N); curve(1e4*(exp(-x/100)),0,max(Ts),add=TRUE,col="red")
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Example: Exponential Decay as Stochastic Map

Simulate as a discrete map with a Binomial # of atoms
decaying each time step, i.e.,

N(t + dt) = N(t)− rbinom(1, n = N(t), prob = r ∗ dt)

N0=1e3; dt=1/100; r=1; N=c(N0); i=1;

while(N[i] > 0) { N[i+1]=N[i]-rbinom(1,N[i],r*dt); i=i+1; } # number not yet decayed

Time=dt*(1:length(N))-dt; plot(Time,N,xlab="Time");

curve(N0*(exp(-r*x)),0,dt*length(N),add=TRUE,col="red")
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Implicit Assumptions?

Which (implicit) assumptions were made? Which could
be relaxed?

Spatially structured interactions?

Small N vs N →∞?

Time-dependent or N-dependent rate?

Others?

Good rule of thumb with ODE models:
Implicit assumptions typically ignore spatial interactions,
stochastic variation and/or small numbers of individuals,
and/or the discrete nature of individuals.
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Mean Field Equations: Applying LLN, CLT

Example: Suppose there are N0 atoms of radioactive 238
92 U.

Over time interval ∆t each can decay w.p. λ∆t.

Let N(t) be the number of uranium atoms. The number lost
during time interval [t, t + ∆t] is approximately a binomial
random variable with parameters n = N(t) and p = λ∆t.
Thus, the expected number lost is n p = λN(t) ∆t.

Assuming N0 is large, then the Law of Large Numbers (LLN)
allows us to claim N(t + ∆t)− N(t) ≈ −λN(t) ∆t. Taking
∆t → 0 we can derive the mean field model:

dN(t)

dt
= −λN(t), N(0) = N0
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Mean Field Equations

Example: Suppose there are U0 atoms of radioactive 238
92 U.

Over time interval ∆t each can decay w.p. λα∆t to 234
90 Th and

α particle 4
2He. Thorium-234 can then decay via loss of a β

particle (positron) to protactinium-234 w.p. λβ∆t.

Let T (t) be the number of thorium atoms, and P(t) the
number of protactinium atoms. We can now use the model

dU(t)

dt
=− λαU(t)

dT (t)

dt
=λαU(t)− λβT (t)

dP(t)

dt
=λβT (t)
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Exercise

Derive the following UTP model

dU(t)

dt
=− λαU(t)

dT (t)

dt
=λαU(t)− λβT (t)

dP(t)

dt
=λβT (t)

1 Write a discrete time map (step size ∆t) that models the
numbers of atoms transitioning states in each time step
using Binomial distributions.

2 Use the LLN to find the corresponding mean-field map.

3 Take the limit as ∆t → 0 to find the continuous time
(ODE) approximation of this mean-field discrete map.
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ODEs: “Bathtub” Models

Model the “flow” of mass from one compartment to another:

dU(t)

dt
=− λαU(t)

dT (t)

dt
=λαU(t)− λβT (t)

dP(t)

dt
=λβT (t)
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Intuition for ODE model terms

Recall the 5-step process!

Question? Assumptions? Simplify, etc...

ODE models often average over heterogeneity, space, etc.

Linear terms correspond to exponential decay rates.

More complex transition rates? Derive1 terms accordingly.

1Remember: Lie, Cheat, Steal! (see Ch. 9 in Ellner & Guckenheimer)

http://press.princeton.edu/chapters/s9_8124.pdf
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Dynamic Model (ODE) Basics

Suppose x ∈ Rn, functions f = [f1, f2, . . . , fn] are smooth2, and

dx

dt
= f (x), x(0) = x0.

State Variables: x = [x1, x2, . . . , xn]
Initial Conditions: x0

State Space: S ⊆ Rn (n = # of state var.)
Vector Field: f
Parameter Space: Ex: Rn2 for a full linear system.
Trajectory/Orbit: Solutions x(t) to the above IVP.

2Continuous partial derivatives near x0 guarantee existence, uniqueness of
solutions.
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Examples

What are the state variables? State space? Parameter space?
1.

dx

dt
= r x (1− x/K )

2.
dN

dt
= r N

(
1− (N/K )θ

)
3.

du

dτ
= u (1− uθ)

4.

Ḣ =rH H − aH H2 − bH S H

Ṡ =rS S − aS S
2 − bS H S
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Equilibria

Trajectories are often categorized by qualitative properties
(e.g. steady-state vs. cycling vs. chaos) of their asymptotic
behavior (i.e., what do solutions look like as t →∞?).

Equilibrium solutions are the natural place to begin studying
those asymptotic properties.

Definition

An equilibrium of
dx

dt
= f (x)

is any constant solution x(t) = x∗ which therefore satisfies

f (x∗) = 0.
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Equilibria

Find all equilibrium solutions to each of the following ODEs:

1.
dN

dt
=r N

2.
dx

dt
=K − x

3.
dx

dt
=x (K − x)

4.
dx

dt
=r x (1− x

K
)

5.
dx

dt
=x (1− x)(a − x)

6.
dx

dt
= sin(x)
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Stability Concepts

1 We say x∗ is locally asymptotically stable (LAS) (or
sometimes just locally stable or attracting) if all nearby
trajectories converge to x∗ (i.e., x(t)→ x∗ as t →∞).

2 We call x∗ globally asymptotically stable (GAS)
(or ...) if all trajectories converge to x∗.

3 We say x∗ is Lyapunov Stable if trajectories that start
near it stay near x∗.

4 We call x∗ neutrally stable if it is Lyapunov Stable but
not attracting.
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Stability Concepts

1 We say x∗ is locally asymptotically stable (LAS) (or
sometimes just locally stable or attracting) if all nearby
trajectories converge to x∗ (i.e., x(t)→ x∗ as t →∞).

2 We call x∗ globally asymptotically stable (GAS)
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near it stay near x∗.

4 We call x∗ neutrally stable if it is Lyapunov Stable but
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Phase Space & 1-D Vector Fields

Phase Space: Horizontal axis x , vertical axis dx
dt

.

Bacterial infection growth
model from Hurtado, 2012.

dp

dt
= r p (1− p)− k p

µ + p
.

In the figures,

pcrit =

(
(1− µ) +

√
(1 + µ)2 − 4

r
k
)

2

pmax =

(
(1− µ) +

√
(1 + µ)2 − 4

r
k
)

2
.

http://dx.doi.org/10.1016/j.jtbi.2012.04.018
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Equilibrium Stability

Theorem

(1D) An equilibrium x∗ of ẋ = f (x) is locally asymptotically
stable if

f ′(x∗) < 0

and is unstable if
f ′(x∗) > 0.

Sketch of Proof.

If u = x − x∗, and f is smooth near x∗ then u = 0 is an equilbrium
of u̇ ≈ f ′(x∗) u which has (approximately) exponential solutions
that grow away from (or decay towards) 0 depending on the sign
of f ′(x∗).
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Equilibrium Stability

Theorem

(1D) An equilibrium x∗ of ẋ = f (x) is locally asymptotically
stable if

f ′(x∗) < 0

and is unstable if
f ′(x∗) > 0.

Sketch of Proof.

If u = x − x∗, and f is smooth near x∗ then u = 0 is an equilbrium
of u̇ ≈ f ′(x∗) u which has (approximately) exponential solutions
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Phase Space & 1-D Vector Fields

Sketch the phase portrait for each of the following, and use it
to determine the stability of each equilibrium point:

1.
dx

dt
=K − x

2.
dx

dt
=x (K − x)

3.
dx

dt
=r x (1− x

K
)

4.
dx

dt
=x (1− x)(a − x)

5.
dx

dt
= sin(x)



Motivation Models & Terminology Equilibrium Stability

Equilibrium Stability

Theorem

An equilibrium x∗ of ẋ = f (x) is locally asymptotically stable
(LAS) if the Jacobian matrix J (where Jij = δfi

δxj
) evaluated at x∗

has eigenvalues with negative real parts. That is, x∗ is LAS if
Re(λi ) < 0 for each of the n eigenvalues of matrix J(x∗).

Sketch of Proof:
Consider the linear approximation of the vector field around x∗.
Then for a small neighborhood of x∗,

ẋ = f (x) ≈ J(x∗) x.

Let u = x− x∗ and A = J(x∗), then

u̇ ≈ A u

If A is full rank then ...
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An equilibrium x∗ of ẋ = f (x) is locally asymptotically stable
(LAS) if the Jacobian matrix J (where Jij = δfi

δxj
) evaluated at x∗

has eigenvalues with negative real parts. That is, x∗ is LAS if
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Sketch of Proof (cont’d):
... let Q be the matrix whose columns are the eigenvectors of A,
and let D = (λ1, ..., λn). Then doing a standard
change-of-coordinates

u̇ =Q D Q−1 u

Q−1 u̇ =D Q−1 u

ẏ =D y

which implies ẏi = λi yi and thus

yi (t) = yi (0) exp(λi t).

Therefore, trajectories that begin sufficiently close to
equilibrium x∗ will approximately grow or decay at rate
Re(λi ) along the corresponding eigenvectors of J(x∗).
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Equilbrium Stability

Find all equilibrium solutions to each of the following ODEs:

1.
dx

dt
=K − x

2.
dx

dt
=x (1− x)(a − x)
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Two-species Competition (MMM Ex. 4.1)

Ḣ = rH H − aH H2 − bH S H

Ṡ = rS S − aS S
2 − bS H S

Predator-Prey

ẋ = r x (1− x)− a x y

k + x

ẏ =
a x y

k + x
− y
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Two-species Competition

Goal: When can the two tree species coexist?

Ḣ = rH H − aH H2 − bH S H

Ṡ = rS S − aS S
2 − bS H S

State Variables: (State Space is non-negative orthant in R2)

H(t), S(t) - Hardwood & Softwood population size
(tons/acre)

Rates: (Units are tons/acre/year)

gH(t) = rH H − aH H2 Hardwood growth rate
gS(t) = rS S − aS S

2 Softwood growth rate
cH(t) = bH S H - Competitive impact on Hardwoods
cS(t) = bS S H - Competitive impact on Softwoods
Parameters: intrinsic growth rate ri , intraspecific
competition coefficients ai , and interspecific competition
coefficient bi .
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Overview: Dynamic Models (ODEs)

Let
dx

dt
= f (x), x(0) = x0

where x(t) ∈ Rn ∀t ∈ R, and f is smooth.

Common Question in Applications:
What are the asymptotic dynamics of this model?

Approach:
(1) Equilibrium Stability Analysis and
(2) Bifurcation Analysis3

3We’ll only briefly see bifurcation theory in this course. For more on the
subject, I highly recommend Dynamical Systems & Chaos by Steve Strogatz.

http://www.stevenstrogatz.com/books/nonlinear-dynamics-and-chaos-with-applications-to-physics-biology-chemistry-and-engineering
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