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Dynamic Model (ODE) Basics

Suppose x ∈ Rn, functions f = [f1, f2, . . . , fn] are smooth1, and

dx

dt
= f (x), x(0) = x0.

State Variables: x = [x1, x2, . . . , xn]
Initial Conditions: x0

State Space: S ⊆ Rn

Vector Field: f
Parameter Space: (Ex) Rn2 if f is a full linear system.
Trajectory/Orbit: Solutions x(t) to the above IVP.

See also: order, (non)autonomous, (non)homogenious

1Continuous partial derivatives near x0 guarantee existence, uniqueness of solutions.
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Equilibria

Trajectories are often categorized by qualitative properties
(e.g. steady-state vs. cycling vs. chaos) of their asymptotic
behavior (i.e., what do solutions look like as t →∞?).

Equilibrium solutions are the natural place to begin studying
those asymptotic properties.

Definition

An equilibrium of
dx

dt
= f (x)

is any constant solution x(t) = x∗ which therefore satisfies

f (x∗) = 0.



Equilibria

Find all equilibrium solutions to each of the following ODEs:

1.
dN

dt
=r N

2.
dx

dt
=K − x

3.
dx

dt
=x (K − x)

4.
dx

dt
=r x (1− x

K
)

5.
dx

dt
=x (1− x)(a − x)

6.
dx

dt
= sin(x)



Example 4.1 – Two-species Competition

Goal: When can the two tree species coexist?

Ḣ = rH H − aH H2 − bH S H

Ṡ = rS S − aS S
2 − bS H S

State Variables: (State Space is non-negative orthant in R2)

H(t), S(t) - Hardwood & Softwood population size (tons/acre)

Rates: (Units are tons/acre/year)

gH(t) = rH H − aH H2 Hardwood growth rate

gS(t) = rS S − aS S
2 Softwood growth rate

cH(t) = bH S H - Hardwood loss rate

cS(t) = bS S H - Softwood loss rate

Parameters: intrinsic growth rate ri , intraspecific competition
coefficients ai , and interspecific competition coefficient bi .



Question: Suppose x∗ is an equilibrium solution to

dx

dt
= f (x)

and assume we perturb our initial condition to be ε-close to
that value (i.e., let x0 ≈ x∗).

Then does that trajectory converge to (or diverge from, or
stay near) the equilibrium value x∗?

Answer: Conduct a stability analysis of the equilibrium x∗.
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Stability Concepts

1 We say x∗ is locally asymptotically stable (LAS) (or
sometimes just locally stable or attracting) if all nearby
trajectories converge to x∗ (i.e., x(t)→ x∗ as t →∞).

2 We call x∗ globally asymptotically stable (GAS)
(or ...) if all trajectories converge to x∗.

3 We say x∗ is Lyapunov Stable if trajectories that start
near it stay near x∗.

4 We call x∗ neutrally stable if it is Lyapunov Stable but
not attracting.
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Phase Space & 1-D Vector Fields

Phase Space: Horizontal axis x , vertical axis dx
dt

.

Bacterial growth model from
Hurtado, 2012.

dp

dt
= r p (1− p)− k p

µ + p

Where

pcrit =

(
(1− µ) +

√
(1 + µ)2 − 4

r
k

)
2

pmax =

(
(1− µ) +

√
(1 + µ)2 − 4

r
k

)
2

http://dx.doi.org/10.1016/j.jtbi.2012.04.018


Phase Space & 1-D Vector Fields

Sketch the phase portrait for each of the following, and use it
to determine the stability of each equilibrium point:

1.
dx

dt
=K − x

2.
dx

dt
=x (K − x)

3.
dx

dt
=r x (1− x

K
)

4.
dx

dt
=x (1− x)(a − x)

5.
dx

dt
= sin(x)
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