# Dynamical Systems Week 6 – Monday Mathematical Modeling (Math 420/620)

Paul J. Hurtado

28 Sept, 2015

## **EECB** Colloquium



#### High temperatures and the natural history of an impending extinction

Craig Benkman, University of Wyoming

2:30-3:30pm, Thursday (10/1) in DMSC 103

www.unr.edu/eecb/colloquium

## Dynamic Model (ODE) Basics

Suppose  $\mathbf{x} \in \mathbb{R}^n$ , functions  $f = [f_1, f_2, \dots, f_n]$  are *smooth*<sup>1</sup>, and

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

 $<sup>^1\</sup>mbox{Continuous}$  partial derivatives near  $x_0$  guarantee existence, uniqueness of solutions.

## Dynamic Model (ODE) Basics

Suppose  $\mathbf{x} \in \mathbb{R}^n$ , functions  $f = [f_1, f_2, \dots, f_n]$  are *smooth*<sup>1</sup>, and

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

State Variables: $\mathbf{x} = [x_1, x_2, \dots, x_n]$ Initial Conditions: $\mathbf{x}_0$ State Space: $S \subseteq \mathbb{R}^n$ Vector Field:fParameter Space: $(\mathbf{Ex}) \mathbb{R}^{n^2}$  if f is a full linear system.Trajectory/Orbit:Solutions  $\mathbf{x}(t)$  to the above IVP.

See also: order, (non)autonomous, (non)homogenious

 $<sup>^1\</sup>mbox{Continuous}$  partial derivatives near  $x_0$  guarantee existence, uniqueness of solutions.

# Equilibria

Trajectories are often categorized by **qualitative properties** (e.g. steady-state vs. cycling vs. chaos) of their **asymptotic behavior** (i.e., what do solutions look like as  $t \to \infty$ ?).

Equilibrium solutions are the natural place to begin studying those asymptotic properties.

**Definition** An **equilibrium** of  $\frac{d\mathbf{x}}{dt} = f(\mathbf{x})$ is any *constant* solution  $\mathbf{x}(t) = \mathbf{x}_*$  which therefore satisfies  $f(\mathbf{x}_*) = 0.$ 

## Equilibria

Find all equilibrium solutions to each of the following ODEs:

1. 
$$\frac{dN}{dt} = r N$$
  
2. 
$$\frac{dx}{dt} = K - x$$
  
3. 
$$\frac{dx}{dt} = x (K - x)$$
  
4. 
$$\frac{dx}{dt} = r x (1 - \frac{x}{K})$$
  
5. 
$$\frac{dx}{dt} = x (1 - x)(a - x)$$
  
6. 
$$\frac{dx}{dt} = \sin(x)$$

### Example 4.1 – Two-species Competition

Goal: When can the two tree species coexist?

$$\dot{H} = r_H H - a_H H^2 - b_H S H$$
$$\dot{S} = r_S S - a_S S^2 - b_S H S$$

State Variables: (State Space is non-negative orthant in  $\mathbb{R}^2$ ) H(t), S(t) - Hardwood & Softwood population size (tons/acre)

**Rates:** (Units are tons/acre/year)  $g_H(t) = r_H H - a_H H^2$  Hardwood growth rate  $g_S(t) = r_S S - a_S S^2$  Softwood growth rate  $c_H(t) = b_H S H$  - Hardwood loss rate  $c_S(t) = b_S S H$  - Softwood loss rate

**Parameters:** intrinsic growth rate  $r_i$ , *intraspecific* competition coefficients  $a_i$ , and *interspecific* competition coefficient  $b_i$ .

**Question:** Suppose  $\mathbf{x}_*$  is an equilibrium solution to

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x})$$

and assume we perturb our initial condition to be  $\epsilon$ -close to that value (i.e., let  $\mathbf{x_0} \approx \mathbf{x_*}$ ).

Then does that trajectory converge to (or diverge from, or stay near) the equilibrium value  $\mathbf{x}_*$ ?

**Question:** Suppose  $\mathbf{x}_*$  is an equilibrium solution to

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x})$$

and assume we perturb our initial condition to be  $\epsilon$ -close to that value (i.e., let  $\mathbf{x_0} \approx \mathbf{x_*}$ ).

Then does that trajectory converge to (or diverge from, or stay near) the equilibrium value  $\mathbf{x}_*$ ?

**Answer:** Conduct a stability analysis of the equilibrium  $x_*$ .

We say x<sub>\*</sub> is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x<sub>\*</sub> (i.e., x(t) → x<sub>\*</sub> as t → ∞).

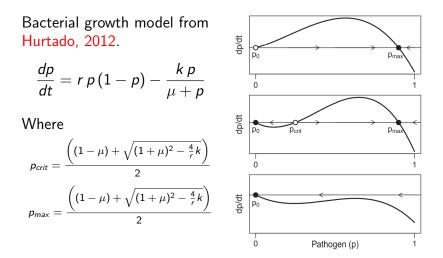
- We say x<sub>\*</sub> is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x<sub>\*</sub> (i.e., x(t) → x<sub>\*</sub> as t → ∞).
- We call x<sub>\*</sub> globally asymptotically stable (GAS) (or ...) if all trajectories converge to x<sub>\*</sub>.

- We say x<sub>\*</sub> is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x<sub>\*</sub> (i.e., x(t) → x<sub>\*</sub> as t → ∞).
- We call x<sub>\*</sub> globally asymptotically stable (GAS) (or ...) if all trajectories converge to x<sub>\*</sub>.
- We say x<sub>\*</sub> is Lyapunov Stable if trajectories that start near it stay near x<sub>\*</sub>.

- We say x<sub>\*</sub> is locally asymptotically stable (LAS) (or sometimes just *locally stable* or *attracting*) if <u>all</u> nearby trajectories converge to x<sub>\*</sub> (i.e., x(t) → x<sub>\*</sub> as t → ∞).
- We call x<sub>\*</sub> globally asymptotically stable (GAS) (or ...) if all trajectories converge to x<sub>\*</sub>.
- We say x<sub>\*</sub> is Lyapunov Stable if trajectories that start near it stay near x<sub>\*</sub>.
- We call x<sub>\*</sub> neutrally stable if it is Lyapunov Stable but not attracting.

### Phase Space & 1-D Vector Fields

**Phase Space**: Horizontal axis x, vertical axis  $\frac{dx}{dt}$ .



### Phase Space & 1-D Vector Fields

Sketch the *phase portrait* for each of the following, and use it to determine the stability of each equilibrium point:

1. 
$$\frac{dx}{dt} = K - x$$
  
2. 
$$\frac{dx}{dt} = x (K - x)$$
  
3. 
$$\frac{dx}{dt} = r x (1 - \frac{x}{K})$$
  
4. 
$$\frac{dx}{dt} = x (1 - x)(a - x)$$
  
5. 
$$\frac{dx}{dt} = \sin(x)$$