Project

Unconstrained Multivariable Optimization $\bigcirc \bigcirc \bigcirc$

Constrained Multivariable Optimization

Week 4 – Monday Mathematical Modeling (Math 420/620)

Paul J. Hurtado

14 Sept, 2015

Project

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Announcements

Date correction for Undergrad Research workshop at Brown:

The workshop takes place Nov 13, not Nov 15!

More information at: www.dam.brown.edu/people/lipshutz/workshop2015.html

Apply by **16 Oct** (Cover Letter, CV, 1 Reference Letter) at: www.mathprograms.org/db/programs/384

Project

Unconstrained Multivariable Optimization $_{\odot\odot\odot}$

Constrained Multivariable Optimization

Questions?

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Multivariable Optimization: Ex 2.1 (Pg 21)

Q: How many 19- & 21-inch TVs maximize profit?

Profit Equation:

Project

Time dependent (aka "Variables"):

 x_{19} - number of 19in TVs sold

x₂₁ - number of 21in TVs sold

p - 19in TV selling price (\$)

q - 21in TV selling price (\$)

Time independent (aka "Constants"; "Parameters"): p_0 - Retail price of 19-inch TV q_0 - Retail price of 19-inch TV p_{19} - 19in discount / 19in TV sold p_{21} - 19in discount / 21in TV sold q_{19} - 21in discount / 19in TV sold

Multivariable Optimization: Ex 2.1 (Pg 21)

Approach #1: Find "interior" optima by solving $\nabla P = 0$.

Using Maxima, we can find and solve

Project

$$\frac{\partial P}{\partial x_{19}} = p_0 - 2p_{19}x_{19} - (q_{19} + p_{21})x_{21} - c_{19} = 0$$

$$\frac{\partial P}{\partial x_{21}} = q_0 - (q_{19} + p_{21})x_{19} - 2q_{21}x_{21} - c_{21} = 0$$

Solving and using the given parameter values yields

$$x_{19} = 4735.04... \qquad \qquad x_{21} = 7042.74...$$

Project

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Multivariable Optimization: Ex 2.1 (Pg 21)

Approach #2: Use generic optimization routines to computationally maximize $P(x_{19}, x_{21})$ over $x_{19}, x_{21} > 0$.

See Ch2-optimization.R

Updated!

Announcements	
0	

Constraints

Project

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Do we assume global or local optima?

Ex: Minimum of $(x - r)^2$ over $x \in \mathbb{R}$ **Ex:** Maximum of $\sin^2(x)$ over $x \in [0, 2\pi]$.

Are there domain constraints?

Box Constraints are the simplest domains restrictions: **Ex:** Real-world constraint on sensible parameter values. **Ex:** Minimize $f(\vec{x})$ given $l_i \le x_i \le u_i$ **Ex:** (TV Example) Recall we required $x_{19}, x_{21} > 0$

Remember to check the boundary values!

Constraints

Project

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Equality Constraints:

Ex: Maximize f(x, y) w/ constraints $g_i(x, y) = c_i$ **Solution:** Continuous functions? Use LaGrange Multipliers.

Inequality Constraints:

Ex: Maximize **linear** f(x, y); linear constraints $g_i(x, y) \le c_i$ **Ex:** Maximize **quadric** f(x, y); linear constraints $g_i(x, y) \le c_i$ **Solution:** Linear and Quadratic Programming, respectively.

Announcements	
0	

Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

LaGrange Multipliers

LaGrange Multipliers arise from necessary conditions for optimizing objective function f(x) w/ equality constraints $g_i(x) = c_i$.

Theorem

If f and all g_i are continuously differentiable, then:

(a) To maximize f, input x must satisfy

$$\nabla f(x) = \sum_{j} \lambda_{j} \nabla g_{j}(x).$$

(b) To minimize f, input x must satisfy

$$-\nabla f(\mathbf{x}) = \sum_{j} \lambda_{j} \nabla g_{j}(\mathbf{x}).$$

Project O Unconstrained Multivariable Optimization

Constrained Multivariable Optimization

Generalizing LaGrange Multipliers

Karush-Kuhn-Tucker (KKT) Multipliers arise from necessary conditions for optimizing objective function f(x) w/**equality** $(g_i(x) = c_i)$ and **ineq. constraints** $(h_j(x) \le d_j)$.

Theorem

If f and all g_i and h_j are **continuously differentiable**, then:

(a) To maximize f, input x must satisfy

$$abla f(x) = \sum_i \mu_i
abla h_i(x) + \sum_j \lambda_j
abla g_j(x).$$

(b) To minimize f, input x must satisfy

$$-\nabla f(x) = \sum_{i} \mu_i \nabla h_i(x) + \sum_{j} \lambda_j \nabla g_j(x).$$