Example 1.1 0000000

Week 2 – Monday Mathematical Modeling (Math 420/620)

Paul J. Hurtado

31 Aug, 2015

Example 1.1

Sensitivity Analysis

MATH COMPETITIONS!

Intermountain Math Competition

November 14, 2015

William Lowell Putnam Mathematical Competition

1st Saturday in December 8-11am, 1-4pm

Contact: Valentin Deaconu (vdeaconu), Birant Ramazan (ramazan)

Example 1.1 •000000 Sensitivity Analysis

Mathematical Modeling

Recall MMM's Five-Step Method (pg 8):

1. Question? This guides the rest of the process!

- 1. Question? This guides the rest of the process!
- 2. Approach? Let model assumptions & question(s) decide.

- 1. Question? This guides the rest of the process!
- 2. Approach? Let model assumptions & question(s) decide.
- 3. Model? Specify a detailed model (or set of models).

- 1. Question? This guides the rest of the process!
- 2. Approach? Let model assumptions & question(s) decide.
- 3. Model? Specify a detailed model (or set of models).
- 4. Analysis? Obtain results that answer the question(s).

- 1. Question? This guides the rest of the process!
- 2. Approach? Let model assumptions & question(s) decide.
- 3. Model? Specify a detailed model (or set of models).
- 4. Analysis? Obtain results that answer the question(s).
- 5. Answer? Answer the motivating question(s) appropriately.

Recall MMM's Five-Step Method (pg 8):

- 1. Question? This guides the rest of the process!
- 2. Approach? Let model assumptions & question(s) decide.
- 3. Model? Specify a detailed model (or set of models).
- 4. Analysis? Obtain results that answer the question(s).
- 5. Answer? Answer the motivating question(s) appropriately.

"Anyone who can understand ... the question as it was presented to you should be able to understand your answer." —MMM

Example 1.1

Sensitivity Analysis

Example 1.1

Q: A pig weighing 200 pounds gains 5 pounds per day and costs 45 cents a day to keep. The market price for pigs is 65 cents per pound, but is falling 1 cent per day. When should the pig be sold?

Example 1.1

Sensitivity Analysis

Step 1: Identify the Question(s)

 $\ensuremath{\mathbf{Q}}\xspace$: When should the pig be sold

Example 1.1 000000

Sensitivity Analysis

Step 1: Identify the Question(s)

Q: When should the pig be sold to maximize profit?

Example 1.1

Sensitivity Analysis

Step 1: Identify the Question(s)

Q: When should the pig be sold to maximize profit?

Q2: When should the pig be sold to break even?

Example 1.1

Sensitivity Analysis

Step 1: Identify the Question(s)

Q: When should the pig be sold to maximize profit?

Q2: When should the pig be sold to break even?

Q3: When should the pig be sold to maximize profit, given it was purchased for X, T days ago?

Example 1.1

Sensitivity Analysis

Step 1: Identify the Question(s)

Q: When should the pig be sold to maximize profit?

Q2: When should the pig be sold to break even?

Q3: When should the pig be sold to maximize profit, given it was purchased for X, T days ago?

etc...

Example 1.1 0000000

Sensitivity Analysis

Step 2: Identify the Approach

Q: When should the pig be sold to maximize profit?

Step 2: Identify the Approach

Q: When should the pig be sold to maximize profit?

Let our model assumptions and questions guide us:

Step 2: Identify the Approach

Q: When should the pig be sold to maximize profit?

Let our model assumptions and questions guide us:

 $\begin{array}{ll} x = 200 \pm 5t \\ p = 0.65 - 0.01t \\ C = 0.45t \\ R = p \cdot w \\ P = R - C \\ t \ge 0 \end{array}$

Step 2: Identify the Approach

Q: When should the pig be sold to maximize profit?

Let our model assumptions and questions guide us:

Variables: t = time (days) w = weight of pig (lbs) p = price for pigs (\$/lb) $C = \cos t$ of keeping pig t days (\$) R = revenue obtained by selling pig (\$)P = profit from sale of pig (\$)

Assumptions: w = 200 + 5t p = 0.65 - 0.01t C = 0.45t $R = p \cdot w$ P = R - Ct > 0

Goal: Find the maximum of the profit function P(t).

Step 2: Identify the Approach

Q: When should the pig be sold to maximize profit?

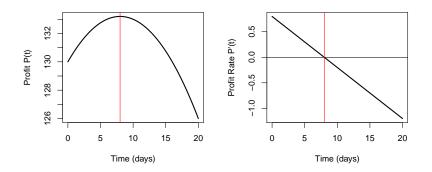
Let our model assumptions and questions guide us:

Variables: t = time (days) w = weight of pig (lbs) p = price for pigs (\$/lb) C = cost of keeping pig t days (\$) R = revenue obtained by selling pig (\$)P = profit from sale of pig (\$)

Assumptions: w = 200 + 5t p = 0.65 - 0.01t C = 0.45t $R = p \cdot w$ P = R - Ct > 0

Goal: Find the maximum of the profit function P(t).

New Q: What value of t maximizes P(t)?


Example 1.1 0000000

Sensitivity Analysis

Step 3: Formulate the Model

Profit P is revenue (R) minus cost (C), therefore

$$P(t) = R(t) - C(t)$$

= $p \cdot w - c \cdot t$
= $(0.65 - 0.01 t)(200 + 5 t) - 0.45 t$

Example 1.1

Sensitivity Analysis

Step 5: Answer the question(s)

Q: When should the pig be sold to maximize profit?

Example 1.1

Sensitivity Analysis

Step 5: Answer the question(s)

- Q: When should the pig be sold to maximize profit?
- **Q:** In the context of our model: Find $\arg \max_t P(t)$.

Example 1.1

Sensitivity Analysis

Step 5: Answer the question(s)

- **Q:** When should the pig be sold to maximize profit?
- **Q:** In the context of our model: Find $\arg \max_t P(t)$.
- A: To maximize profit, sell the 200 pound pig **8 days** later when it weighs **240 pounds** for a profit of **\$133.20**.

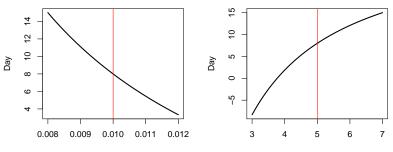
Example 1.1

Sensitivity Analysis

How sensitive is our answer to different inputs?

Let the rate at which the price falls per day be

r = 0.10


Then our price per pound is

$$p(t)=0.65-r\,t$$

Thus, the optimal selling time is the root of

$$P'(t) = \frac{-2(25 \, r \, t + 500 \, r - 7)}{5}$$

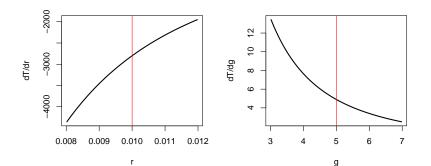
```
## R code to plot `best time to sell' as function of r, g
r=seq(0.008,0.012,length=100)
plot(r, (7-500*r)/(25*r), type="1", lwd=2, ylab="Day")
abline(v=0.01, col="red")
g=seq(3,7,length=100)
plot(g, 5*(13*g-49)/(2*g), type="1", lwd=2, ylab="Day")
abline(v=5, col="red")
```


r

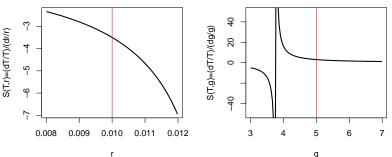
g

Example 1.1 0000000

(Relative) Sensitivity


Let $T = \arg \max_{t} P(t)$. Then the proportional change in T per small change in r is approximately

$$\frac{\Delta T/T}{\Delta r/r} \longrightarrow \frac{dT}{dr} \frac{r}{T}$$


Definition: For any response R and parameter p we define the (relative) *sensitivity* of R to p as

$$S(R,p) = rac{dR}{dp}rac{p}{R}$$

```
## Absolute sensitivity of `best time to sell' to r, g
r=seq(0.008,0.012,length=100); Tr=(7-500*r)/(25*r)
plot(r[-1]-diff(r)/2,diff(Tr)/diff(r), type="1", lwd=2, ylab="dT/dr", xlab="r")
abline(v=0.01, col="red")
g=seq(3,7,length=100); Tg = 5*(13*g-49)/(2*g)
plot(g[-1]-diff(g)/2,diff(Tg)/diff(g), type="1", lwd=2, ylab="dT/dg", xlab="g")
abline(v=5, col="red")
```



```
## Relative sensitivity of `best time to sell' to r, g
r=seq(0.008,0.012,length=100); Tr=(7-500*r)/(25*r)
plot(r[-1]-diff(r)/2, diff(Tr)/diff(r) * (r[-1]-diff(r)/2)/(Tr[-1]-diff(Tr)/2),
abline(v=0.01, col="red")
g=seq(3,7,length=100); Tg = 5*(13*g-49)/(2*g)
plot(g[-1]-diff(g)/2,diff(Tg)/diff(g) * (g[-1]-diff(g)/2)/(Tg[-1]-diff(Tg)/2),
abline(v=5, col="red")
```


r

Example 1.1

Sensitivity Analysis

A Sensitivity Analysis can

- ... identify parameter values for which small changes yield large changes in focal output quantities.
- ... identify the parameters for which larger parameter uncertainty will lead to large output/prediction uncertainty.
- ... identify where changing a parameter will increase or decrease a given output quantity.