
MATH 420 Homework #3 SOLUTIONS

Instructions: A printed copy of your homework should be handed in at the start of class
the day it is due. If you have any supplementary electronic files you wish to turn in (e.g. R
scripts or wxMaxima files) email them to the instructor prior to class with file name format:
Lastname-hwX.ext. Each part of each exercise is worth 10 points unless stated otherwise.

Exercise 1: Suppose the results of a Poisson Regression analysis done on transect count data
(similar to the one done in class) reveals a best fit model of yi ∼ Poisson(λ = 0.75 Lengthi),
where the data do not appear to be overdispersed. Based on the underlying model, what
would you estimate to be the average distance between organisms along the transects? Justify
your answer.

Ans: Recall that for a homogeneous Poisson Process with rate r the intervals between events
have lengths that are Exponentially distributed with rate r and the number of events in an
interval of length L is Poisson with mean λ = r L. Therefore, if our best fit model is Poisson
with mean 3

4
L, the distances between organisms along the transects should be Exponentially

distributed with rate r = 3
4
, and should have an average distance of 1

r
= 4

3
.

Exercise 2: See the file rssmle.R on the course website.

(a) First, generate a fake data set of 50 points along a parabola (i.e. a quadratic polynomial)
with two real roots. Whether or not you add noise is up to you.

set.seed(8675309)

x=runif(50, -5,5)

pars <- runif(3, -5,5) # mystery parameters!

y=pars[1]*(x-pars[2])*(x-pars[3])

plot(x,y); abline(h=0)
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http://pauljhurtado.com/teaching/SP18/MATH420/rssmle.R


(b) Estimate the parameters ri in y = (x − r1)(x − r2) or −(x − r1)(x − r2) based on
graphically inspecting the data (e.g. plot it and carefully read off where the roots
occur).

Ans: In the figure above, around −0.5 and 2.5.

(c) Fit the function y = a+ b x+ c x2 to your simulated data using two different methods in
optimx() (e.g., use method=c("Nelder-Mead","BFGS")). Use the quadratic formula
to calculate the roots ri, and compare to part (b).

Ans: Here we’ll use minimization of the RSS=
∑

i

(
yi − (a+ b xi + c x2)

)2
.

library(optimx)

RSS <- function(ps) {
a=ps[1]; b=ps[2]; c=ps[3];

return(sum((y-(a+b*x+c*x^2))^2))

}
fit=optimx(c(a=1,b=0,c=1),RSS,method=c("Nelder-Mead","BFGS","nlm"))

fit

## a b c value fevals gevals niter

## Nelder-Mead -4.28141 -4.76560 2.52773 3.11290e-06 228 NA NA

## BFGS -4.28134 -4.76562 2.52771 8.41885e-19 27 8 NA

## nlm -4.28132 -4.76562 2.52770 1.83487e-08 NA NA 19

## convcode kkt1 kkt2 xtimes

## Nelder-Mead 0 FALSE TRUE 0

## BFGS 0 TRUE TRUE 0

## nlm 0 FALSE TRUE 0

## BFGS gave the best fit.

c(a=fit$a[2], b=fit$b[2], c=fit$c[2])

## a b c

## -4.28134 -4.76562 2.52771

## TRUE vs ESTIMATED ROOTS

r1 = (-fit$b[2]-sqrt(fit$b[2]^2-4*fit$a[2]*fit$c[2]))/(2*fit$c[2])

r2 = (-fit$b[2]+sqrt(fit$b[2]^2-4*fit$a[2]*fit$c[2]))/(2*fit$c[2])

c(pars[2], r1) # TRUE vs ESTIMATED root 1

## [1] -0.664309 -0.664309

c(pars[3], r2) # TRUE vs ESTIMATED root 2

## [1] 2.54966 2.54966

Thus, our procedure for estimating the two roots was a success.
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Exercise 3: Fit the rate parameter of an exponential distribution from a simulated data
set (use set.seed(123); x=rexp(200,rate=pi);) using an MLE based optimization using
optimize() and the dexp() function in R (i.e., don’t use the analytical formula for the MLE;
see Exercise 4).

Ans:

set.seed(123); x=rexp(200,rate=pi);

nLL = function(r) { -sum(dexp(x,rate=r,log=TRUE)) }
fit=optimize(nLL,c(1e-15, 10)); fit

## $minimum

## [1] 3.11903

##

## $objective

## [1] -27.5045

# An acceptable alternative with some helpful extras...

fit=optimx(1, nLL, method="L-BFGS-B", lower=1e-15,upper=10); fit

## p1 value fevals gevals niter convcode kkt1 kkt2 xtimes

## L-BFGS-B 3.11903 -27.5045 9 9 NA 0 TRUE TRUE 0

Exercise 4: Next, repeat the above parameter estimation but here find an analytical
expression for the MLE r̂ by differentiating the negative log likelihood function for the scenario
above (i.e., for an exponential distribution with rate r) for a given data set (x1, . . . , xN).
Recall

f(x) = r exp(−r x), for x ≥ 0.

Ans: Differentiating (with respect to r) the negative log likelihood function

nLL(r|x) = − ln

( N∏
i=1

r exp(−r xi)
)

= − ln

(
rN exp

(
− r

N∑
i=1

xi

))
= r N x̄−N ln(r)

yields
∂

∂r
nLL(r|x) =

(
x̄− 1

r

)
N

which, when set to zero to find the value of r that minimizes nLL, gives the MLE

r̂ =
1

x̄
.
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Exercise 5:
(420 Students Only) Use the boot package in R to calculate 95% confidence intervals
for the estimate of r used in Exercise 4 above (for example, see https://www.statmethods.

net/advstats/bootstrapping.html).

Ans: Building on the code above...

library(boot)

r.boot <- function(xs,indx) { 1/mean(xs[indx]) }
bs <- boot(data=x, statistic=r.boot, R=50000)

## Which type? See http://www.tau.ac.il/~saharon/Boot/10.1.1.133.8405.pdf

boot.ci(bs,conf=0.95, type=c("basic","bca","perc"))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 50000 bootstrap replicates

##

## CALL :

## boot.ci(boot.out = bs, conf = 0.95, type = c("basic", "bca",

## "perc"))

##

## Intervals :

## Level Basic Percentile BCa

## 95% ( 2.661, 3.498 ) ( 2.740, 3.577 ) ( 2.712, 3.537 )

## Calculations and Intervals on Original Scale

## basic is less reliable than bca and percentile methods

(620 Students Only) The non-parametric bootstrap is a resampling-based method of
constructing a distribution for an estimator that can then be used to create confidence intervals.
In short, iteratively sample from your data with replacement a new data set with the same
sample size and use it to recalculate your estimate. Repeat this 10,000 or more times and each
time store the estimate, then use that set of 10,000+ estimates as a sample from the estimator
distribution to construct the confidence interval. Implement this for the estimation procedure
in Exercise 3 above, plot a histogram of the bootstrapped estimates, an empirical CDF (using
plot(ecdf(rbootest)) if the vector of bootstrap estimates is stored in rbootest), a CDF
plot using the estimate r̂ (use curve(pexp(x,r.est),0,2.8,col="red",type="l",lty=2

or overlay it on the empirical CDF by adding the argument add=TRUE).
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a. Does this estimate seemed biased?

b. What is the 95% Confidence Interval on r? (Hint: if the bootstrap estimates are in a
vector rbootest, the 2.5% and 97.5% percentile of r can be obtained using the R code
quantile(rbootest, c(0.025, 0.975))).

Ans:

r.hat <- function(xs) { 1/mean(xs) }
r.est <- r.hat(x) # our actual r estimate for sample x

rbootest = c() # we'll fill this up with bootstrapped estimates

for(i in 1:10000) {
rbootest[i] = r.hat(sample(x,length(x),replace=TRUE))

}
par(mfrow=c(1,3))

hist(rbootest,main="Bootstrapped r estimates",60)

abline(v=pi,col="black")

abline(v=mean(rbootest), col="red")

legend("topright",c("True","Mean(rbootest)"),lty=c(1,1),col=c("black","red"))

plot(ecdf(rbootest),main="Empirical CDF for r.hat")

curve(pexp(x,rate=r.est),0,5,col="red",type="l",lty=2,

main="CDF of Exponential with rate r", ylab="Density")

curve(pexp(x,rate=pi),0,5,col="black",type="l",lty=3, lwd=2, add=TRUE)

legend("bottomright",c("True","Estimated"),lty=c(3,2),col=c("black","red"), lwd=c(2,1))
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From these results it seems that (a) the estimates aren’t significantly biased, and (b) using a
crude approach to finding the confidence interval, we have

quantile(rbootest, c(0.025, 0.975))

## 2.5% 97.5%

## 2.73714 3.57140
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Exercise 6 (Parametric Bootstrap): Consider this small study of human height ver-
sus shoe size at (https://www.statcrunch.com/5.0/viewreport.php?reportid=35115),
summarized in Figure 1 below, which found the following best fit SLR regression model
correlating U.S. shoe size and height in inches: Height = 50.87 + 1.657ShoeSize with
σ̂ = 3.78 which yielded an R2 value of 0.387. This analysis is repeated in the R script
hw3-shoesize-height.R using the data in hw3-sullivan-statistical-survey-data.xlsx.

## Shoe size data from https://www.statcrunch.com/5.0/viewreport.php?reportid=35115

## Data from https://www.statcrunch.com/app/index.php?dataid=450205

library(readxl)

ssdat <- read_excel("hw3-sullivan-statistical-survey-data.xlsx",1)

# Redo their analysis:

fit0 <- lm(Height~Foot, data=ssdat)

summary(fit0)

##

## Call:

## lm(formula = Height ~ Foot, data = ssdat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.75 -2.20 0.56 2.53 12.56

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 50.875 1.531 33.2 <2e-16 ***

## Foot 1.657 0.148 11.2 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.78 on 197 degrees of freedom

## Multiple R-squared: 0.387,Adjusted R-squared: 0.384

## F-statistic: 124 on 1 and 197 DF, p-value: <2e-16

# We can access elements of the object returned

# by a function by treating the function call

# as if it were an object, e.g. a data frame:

Rsq0 <- summary(fit0)$adj.r.squared

Rsq0

## [1] 0.38402

# From the regression on the website listed above (compare to above)

B0 = 50.874798;

B1 = 1.6565183;

sd = 3.7840705;

N = nrow(ssdat); N # sample size

## [1] 199
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## Create vectors ShoeSize and ExpectedHeight.

ShoeSize = ssdat$Foot

ExpectedHeight = B0 + B1 * ShoeSize

## Parametric Bootstrap...

K=50000

Rsq = rep(NA,K) # place holder for Rsq values

for(i in 1:K) {
# Here I'm packing the process of sampling from the best fit model

# and re-running the regressio to get Rsq all into a single line of code ...

Rsq[i] = summary(lm(Height~ShoeSize, data=data.frame(ShoeSize = ssdat$Foot,

Height = rnorm(N,mean=ExpectedHeight,sd=sd))))$adj.r.squared

}

hist(Rsq,60,xlim=c(0,1),freq=FALSE)

abline(v=Rsq0,col="red")
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a. What is the basic definition of R2 in this context, and how should we interpret R2 values?

Ans: Apart from the technical definition, R2 is a measure of how much of the variance
is explained by our model. Thus large values are interpreted as indicating that the
model does a good job ‘‘explaining the data”.

b. How expected or unexpected is this level of explanatory power (i.e., the R2 = 0.387
value) under the assumption that this best fit model is true, and given these sam-
ple sizes? To answer that question, use the following number of individuals with
each shoe size in the data set to simulate synthetic data under their best fit lin-
ear model given above. Repeat this data simulation 50,000 times using a for loop
(for(i in 1:50000) { ...) and each time store the R2 value using something like
fit=lm(...); fitsum <- summary(fit); Rsq[i]<-fitsum$adj.r.squared;. Plot
a histogram of these R2 values, use abline() to draw a vertical line indicating the
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R2 = 0.387, and see Exercise 5 above, and calculate a corresponding p-value.

Ans: Under the (strong!) assumption that the best-fit model is the ‘‘true” model, we
see a range of Rsq values from around 0.2 to 0.6 for similarly distributed data sets.
Thus, we would not expect to see very high R2 values for such data given this amount
of ‘‘noise” and this sample size.

c. Discuss what your results mean in terms of how well this particular data set meets the
assumptions of the SLR model.

Ans: It does not seem to be obviously inconsistent with the assumed modeling frame-
work, however additional checking (e.g., the usual statistical model diagnostic checks)
is needed to fully answer this question.

Figure 1: Source: https://www.statcrunch.com/5.0/viewreport.php?reportid=35115

based on data from the Sullivan Statistics Survey at https://www.statcrunch.com/app/

index.php?dataid=450205.
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