Optimization

Intervals 000000

Simple Linear Regression Week 4 – Tuesday Applied Regression Analysis (STAT 757)

Paul J. Hurtado

Tuesday, 9 Feb, 2016

.

Optimization

Intervals

Announcements

Recall the SLR Model:

Estimates $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$ yield the *best fit model* $Y_i | X = x_i \sim \text{Normal}(\text{mean} = \hat{\beta}_0 + \hat{\beta}_1 x_i, \text{ var} = \hat{\sigma}^2)$

or, alternatively stated

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$$

where ϵ_i is Normal error with mean 0, variance $\hat{\sigma^2}$.

Optimization

Intervals

Parameter Estimation via Optimization

Recall $\hat{\beta}_0$ and $\hat{\beta}_1$ were obtained by finding the slope (b_1) and intercept (b_0) that **minimize** the *RSS*

$$RSS = \sum_{i=1}^{n} (y_i - \overbrace{(b_0 + b_1 x_i)}^{\widehat{y_i}})^2$$

This is an example of an **optimization** problem: Finding function arguments (i.e., input values) that *minimize* or *maximize* an **objective function**.

Optimization

Intervals 000000

Optimization in Practice

Suppose we aim to minimize the objective function

 $G(\theta) = G(a, b, c).$

Typically, two approaches are used:

4 Analytical: Solve $\nabla G(\theta) = 0$, i.e.,

$$\frac{\partial G}{\partial a} = 0, \qquad \frac{\partial G}{\partial b} = 0, \qquad \frac{\partial G}{\partial c} = 0.$$

② Computational: Use minimization algorithms (see optimize(), optimx() in R)

Optimization

Intervals 000000

Analytical Example

which rearranges to two linear equations in b_0 and b_1 :

$$\sum_{i=1}^{n} y_i = b_0 n + b_1 \sum_{i=1}^{n} x_i; \qquad \sum_{i=1}^{n} x_i y_i = b_0 \sum_{i=1}^{n} x_i + b_1 \sum_{i=1}^{n} x_i^2$$

Solving yields the estimates $\widehat{\beta}_1 = S_{XY}/S_{XX}$ and $\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x}$

Optimization

Computational

```
library(optimx)
# Minimize f(a,b)=a^2+b^2
f <- function(ps) { return(ps[1]^2+ps[2]^2) }</pre>
opt=optimx(c(a=1,b=1),f)
opt
                                          value fevals gevals niter
##
                                        b
                          а
  Nelder-Mead 3.754010e-05 5.179101e-05 4.091568e-09
                                                           63
                                                                  ΝA
                                                                        NΑ
##
## BFGS -4.263536e-16 -4.263536e-16 9.087931e-30
                                                           8
                                                                   3
                                                                        NA
            convcode kkt1 kkt2 xtimes
##
## Nelder-Mead
                     O TRUE TRUE
## BFGS
                     O TRUE TRUE
                                      0
```

How close to the analytical optimum (0,0) are these estimates?

 $a = -4.2635361 \times 10^{-16}$ $b = -4.2635361 \times 10^{-16}$

Exercise

Edit the following code to compare estimates of the slope and intercept obtained from optimx() versus lm().

```
library(optimx)
# Simulated data set
set.seed(757)
x = 1:20
y=rnorm(length(x),11+1.2*x,sd=pi)
# Minimize obj()=RSS
obj <- function(ps){</pre>
   return( sum( (???)^2 ) )
p.initial=c(b0=0,b1=0)
opt=optimx(p.initial,obj)
opt
# lm() gives...
summary(lm(y<sup>x</sup>))
```

Optimization

Intervals •00000

Prediction & Confidence Intervals

Recall that our estimators $\widehat{eta_0}$ and $\widehat{eta_1}$ are Normal r.v.s

Properties of Normal Distributions: Suppose $Y \sim Normal(\mu, \sigma)$ and $a \in \mathbb{R}$.

- If Z = a + Y then $Z \sim Normal(\mu + a, \sigma)$.
- 3 If Z = Y/a then $Z \sim Normal(\mu/a, \sigma/a)$.
- (Standard Normal) If $Z = (X \mu)/\sigma$ then $Z \sim Normal(0, 1)$.

Note \bar{X} is *Normal*($\mu, \sigma/\sqrt{n}$

Optimization 000000

Prediction & Confidence Intervals

To characterize uncertainty in estimates of β_0 and β_1 (or predictions of Y|X = x), use the distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$ (or $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$) to compute **confidence intervals** (or **prediction intervals**). Compare to **credible interval**.

- A 100(1 α)% confidence interval is the interval (a, b) that will contain the expected value of the given distribution approximately 100(1 α)% of the time.
- If the complete process of data collection and analysis were repeated, a 100(1 α)% prediction interval will contain the next observation of Y|X = x approximately 100(1 α)% of the time.

0

Confidence Interval

```
x = 1:20
B0=11
B1=1.2
Nreps=1000
CIdat=data.frame(L0=rep(NA,Nreps),U0=NA,B0.in.CI=NA,L1=NA,U1=NA,B1.in.CI=NA)
for(i in 1:Nreps) {
 y=rnorm(length(x),B0+B1*x,sd=pi)
 M=confint(lm(y~x),level = 0.95)
 CIdat$L0[i] = M[1,1]; CIdat$U0[i] = M[1,2]
 CIdat$L1[i] = M[2,1]; CIdat$U1[i] = M[2,2]
 CIdat$B0.in.CI[i] = ( M[1,1]<B0 & B0<M[1,2] )
 CIdat$B1.in.CI[i] = ( M[2,1]<B1 & B1<M[2,2] )
sum(CIdat$B0.in.CI)/Nreps
## [1] 0.946
sum(CIdat$B1.in.CI)/Nreps
## [1] 0.954
```

Optimization

Prediction Interval (SLR)

```
x=1:20
B0=11
B1=1.2
Nreps=1000
PIdat=data.frame(L=rep(NA,Nreps),U=NA,Y.in.PI=NA)
for(i in 1:Nreps) {
  y=rnorm(length(x),B0+B1*x,sd=pi)
  PI=predict(lm(y<sup>x</sup>x),data.frame(x=12),interval="prediction",level=0.95)
  PIdat L[i] = PI[2]
  PIdat$U[i] = PI[3]
  Y=rnorm(1,B0+B1*12,sd=pi)
  PIdat$Y.in.PI[i] = ( PI[2]<Y & Y<PI[3] )</pre>
sum(PIdat$Y.in.PI)/Nreps
## [1] 0.95
```

Optimization

Intervals

Credible Intervals

The difference between *credible intervals* and *confidence intervals* is mostly philosophical: the former arising in Bayesian frameworks, the latter in Frequentist frameworks. *The two can differ substantially* in more complex models, but it's reassuring that for many models (e.g., linear with Normal errors) *they are often indistinguishable*.

For now, it suffices to know (1) that they're different concepts, and (2) what *exactly* defines a confidence interval.

- **()** The **100** (1α) % confidence interval is an interval calculated from a single data set that for $100(1 \alpha)$ % of such data sets includes the true value in question.
- The 100(1 α)% credible interval is the interval that with 100(1 α)% probability contains the true value.

For more information, see comparisons in applications, e.g.,

Lu, Ye, and Hill. 2012. Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification. *URL: people.sc.fsu.edu/ mye/pdf/paper31.pdf*

Exercise

Optimization

Intervals 00000●

See ?qt. Modify the **Confidence Interval** code above so that instead of using confint() you calculate upper and lower limits using qt() and the formulas in Ch. 2.

Modify the code resulting from the exercise above to instead (erroneously!) use the Normal distribution, i.e., assume we can use the mean for the expected value and the sample standard deviation for the population standard deviation. Does the t distribution or the Normal distribution give the broader Confidence Interval?