Generalized Linear Models (GLMs/GLIMs)
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Principlan of Maximum Likelihood

Consider a probability model of independent sample data
x = {x1,X2,...,Xn}
can be formulated as a joint probability density (or mass) function
fo(x).
Then the likelihood function is defined as
£(8]x) = f(x)

where 6 is a parameter vector (the argument to the Likelihood
function) and the x values (the data) are fixed. That is, the
likelihood function is just the joint density or mass function, but
where we reverse the roles of parameter and data.

Q: What is the domain of the joing PDF/PMF? What is the domain
of the Likelihood function?



Likelihood Examples

Q: What is a plausible likelihood function for the following data set
where an unfair coin was tossed 14 times and the number of
outcomes that were heads was counted:

y =(4,6,6,7,7,9,10,8,2,6)7

Q: What is the likelihood function for a data set of tree heights?

Q: How would you determine a reasonable likelihood function for
the distances from UNR to all of the Starbucks stores in Nevada?



Maximum Likelihood Estimators

If § maximizes the likelihood, we call it a Maximum Likelihood
Estimator (MLE). The Cramer-Rao Inequality tells us MLEs are
minimum variance estimators but MLEs are often biased.

Intuition: Suppose you estimate the mean y and variance o2 of a
Normal distribution by plotting a histogram, choose an initial 4 and
o and overlay the corresponding density curve, then iteratively

adjust p and o until it looks like a good match.
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MLE Example

For iid Normal data (f(x;; i1, 0)) the joint density fx(x; 1, 0) = [[]_, f(xi, i1, o)
defines the likelihood function for parmeters i and o,

L(p,0;%) = H f(xi, b, o).
i=1

Plotting likelihood values over a range of possible parameter values (here holding
one parameter constant while varying the other) in R yields. ..
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The MLEs for p and o are the pair of values that yield the maximum likelihood
value. In this case, using the optim() function yields ;x = 9.98 and o = 1.88.



GLM Model Framework

The GLM is described by three components:

1. The random component specifies the conditional distribution of
yi|Xi and is typically a member of the exponential family of
distributions (Normal, binomial, Poisson, Negative-binomial,
etc.) but other distributions are possible.

2. We call our linear sum of predictors the linear predictor, and
denote it as 7; = [y + Zf:l Bj xij

3. We call the transformation that links the expected response
values pj = E(y;|X) and the linear predictor n; the link
function: g(p;) = n;. This link function is assumed to be
smooth (differentiable) and invertible. It's inverse g~! is often
called the mean function since u; = g~ 1(n;).



GLM vs MLR

Recall the MLR model with untransformed response values can be
written as

p
yi=Bo+ Y Bixj+ei
j=1
In that case, we model E(g(y;)) as a linear sum of x; values, and
further assume Normal errors with constant variance.

Consider, for now, the simple untransformed case (i.e., g is the
identity function).



GLM vs MLR

One could pose the MLR model as a GLM (not to be confused with
a General Linear Model) as follows:

1. The random component is Normally distributed.
2. The linear predictor is n; = P + Zle B xij (nothing new
here!)

3. The link function is the identity function:
8(E(yi) = E(yi) = ni



GLM vs MLR

Note that transforming Y values under MLR is different than
specifying a non-identity link function!

GLMs model g(E(y;)), the transformed expecation of the response,
using the linear predictor. This gives more flexibility to apply
linearizing transformations without affecting the distribution about
that trend. For example, compare the two models by comparing y;
values and inverse-transforms:

MLR: y; = g1 (ni + €;)
GLM: y; = g H(m) + €

This distinction often makes GLMs preferrable over MLR.



Parameter Estimation, etc.

Parameter estimation is done via Maximum Liklihood, and most of
the diagnostics for multiple linear regresion carry over to GLMs.

For more information, please see Ch. 15 of Applied Regression
Analysis & Generalized Linear Models by John Fox.
http://www.sagepub.com/sites/default/files/
upm-binaries/21121_Chapter_15.pdf


http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf
http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf

Example: Logistic Regression (Sheather, Ch. 8)

A common form of response data are counts of a particular type of
outcome among m trials. For example, the number of individuals in
a sample with a specific genotype. In such cases, the data are best
modeled using a binomial distribution, not a Normal distribution,
using logistic regression.

E(Y|x) ~ binom(m, p)



Example: Logistic Regression

Here the parameter of interest is p — the probability of a success on
each of our m trials. Since m is known and not a parameter that
needs to be estimated, the goal is to estimate p as a function of our
linear predictor. In logistic regression, this is done by assuming a
logit link function,

exp(ni) m

E(Y|X)=mp= —
(YIX)=mp T Fexp(n) 1+ exp(—m)

Thus, a little algebra gives that

p(x)
()
! 1—p(x)
We call the right side of that equation the /logit function, and
p(x)/(1 — p(x)) the odds.



Example: Logistic Regression

To see how this can be cast as a GLM, note that:

1. The distribution is binomial.

2. The relationship between the mean (let's use E(y;/m = 6;))
and linear predictor 7n; is given by the logit function

ni = g(f) = log <1€(;<()X)>

Exercise: Form a group of 2-4 people to find some online examples
of logistic regression analyses in R using glm() and work through
them, or simulate binomial count data with known p using either a
logic or probit (or other) link function, then use glm() to conduct a
logistic regression on your synthetic data.



