Numerical Methods

Homework Solution

Week 4 – Wednesday Mathematical Modeling (Math 420/620)

Paul J. Hurtado

16 Sept, 2015

Numerical Methods

Homework Solution

Constrained Optimization

Ex: Maximize general f(x) with general constraints. (Hard!) **Solution:** Equivalent, unconstrained objective function?

Smooth Constraints:

Ex: Maximize continuous f(x, y) w/ constraints $g_i(x, y) = c_i$ **Solution:** Use LaGrange (or KKT) Multipliers.

Numerical Methods

Homework Solution

Constrained Optimization

Ex: Maximize general f(x) with general constraints. (Hard!) **Solution:** Equivalent, unconstrained objective function?

Smooth Constraints:

Ex: Maximize continuous f(x, y) w/ constraints $g_i(x, y) = c_i$ **Solution:** Use LaGrange (or KKT) Multipliers.

Linear Constraints:

Ex: Maximize **linear** f(x); linear constraints $g_i(x) \le c_i$ **Ex:** Maximize **quadric** f(x); linear constraints $g_i(x) \le c_i$ **Solution:** Linear & Quadratic Programming, respectively

Numerical Methods

Homework Solution

Example: Linear Programming

Code to plot example linear objective with linear constraints:

Numerical Methods

Homework Solution

Example: Linear Programming

Optimization 000● Numerical Methods

Homework Solution

Example: Linear Programming

Numerical Methods

Gradient Methods

Examples: Broyden-Fletcher-Goldfarb-Shanno (BFGS) in R.

Step 1: Compute an approximate, or use-provided, Gradient (vector of partials).

Step 2: Compute an approximate, or use-provided, Hessian (matrix of 2nd order partials).

Step 3: Search along the line of steepest descent for a minimum.

Step 4: Choose a new point, and repeat.

Numerical Methods

Non-gradient Methods

Examples: Nelder-Mead in R.

Step 1: For a function of *n* variables, choose n + 1 nearby points to form a *simplex*.

Step 2: Reflect the "worst" point through the centroid of the remaining *n* points.

Step 3: Stretch in that direction if it's better, contract if worse.

Step 4: Repeat steps 2-3 for the new simplex.

Numerical Methods

Homework Solution

Nelder-Mead Simplex Algorithm

http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_ method#/media/File:Nelder_Mead2.gif

Numerical Methods

Which Method?

How much do you know about your chosen objective surface?

How "smooth" is it?

How hard is it to compute objective function values?

How much computing power do you have?

Good rule of thumb: Methods like Nelder-Mead, that assume little about the objective surface, tend to work well on a broad range of problems!

Numerical Methods

Homework Solution

Choosing Objective Functions

Homework Problem 1b and Bonus Problem